Crew 289 End-Mission Research Report 05Jan2024

[title End-Mission Research Report – January 5th]
[category science-report]

Mars Desert Research Station
Mission Plan

Crew 289 – Deimos
Dec 25th, 2023 – Jan 6th, 2023

Crew Members:
Commander: Adriana Brown
Executive Officer and Crew Journalist: Sara Paule
Crew Geologist: Eshaana Aurora
Crew Engineer: Nathan Bitner
Health and Safety Officer and Crew Astronomer: Gabriel Skowronek
Green Hab Officer and Crew Biologist: Riya Raj
Crew Scientist: Aditya Arjun Anibha

A logo of a planet with stars and planets Description automatically generated

Crew Projects:

Project 1
Title: Remote Station Monitoring
Author: Nathan Bitner
Description, activities, and results: The goal of this project is to provide MDRS crew and mission control with air quality data and airlock statuses from the MDRS station. Through work conducted by Purdue crews 288 and 289, two air quality modules have been created that successfully send information to an adafruit dashboard. This dashboard can then be accessed remotely by those with the account information. The software for these boards, and all the others to be deployed, is on the GitHub page https://github.com/bitNathan/MDRS_monitoring_overlay/tree/main made for this project. More technical details and documentation can also be found there.
Each module uses a Raspberry Pi Pico W board to send data to the dashboard and control the connected sensors. Each board currently measures temperature, CO2, VOC, ozone, and PM2.5 particles using separate sensors that were purchased before the mission. The Raspberry Pi then automatically uploads a snapshot of this data to the dashboard hourly.
Shipping delays and technical difficulties prevented full deployment of some air quality sensors during this rotation, and other difficulties with the board themselves prevented full deployment over our intended timeline. Our idea to use battery packs made from AA batteries connected together works, but it is labor intensive to make these packs and they provide, at best, power for only two weeks of operational use. In the future, switching to power via wall fixture or rechargeable batteries that can be routinely rotated would provide a permanent solution. In addition, an unknown connection error appeared roughly halfway through crew 289’s rotation which prevented long term testing.
In the future, Purdue plans on continuing this project to complete what was started by these two crews including full air quality and airlock status deployment in addition to adding monitoring for EVA suit charges, water level detection, and online crew logs and schedules. All of these are possible using equipment already at the station, aside from wire, LEDs, resistors, casing, and long-term battery solutions.

Figure 1. Adafruit dashboard consisting of air quality data collected from MDRS habitat. Top) The main dashboard screen shown here is highly configurable, but for testing it contains just one plot of all the air quality data from one sensor module. This can be expanded to include other rooms as well as other information. Bottom) The adafruit website refers to a stream of data as a feed. In this image we can see the feeds from our first prototype air quality module grouped together by the location that they are intended to monitor.

Project 2
Title: Recording Dust Levels in the HAB
Author(s): Gabriel Skowronek
Description, activities, and results: The objective of this project involved qualitatively tracking the amount of dust that settles down on surfaces throughout the Habitat. Several sites were chosen throughout the Hab, including both the upper and lower deck. In the lower deck, the top shelf of the comms station and the black cabinet underneath the first aid station were of interest. In the upper deck, the comms station surface and the top of the kitchen cabinets were chosen. Samples of dust were collected by swabbing the surfaces with a moistened cotton swab and subsequently observed using a handheld magnifier. Initially, the surfaces were thoroughly cleaned with wet wipes to obtain a clean baseline to track further dust accumulation over time. Swabbing was then conducted every 2-3 days, with observations like number of particulates, relative size and color being recorded in journal entries. Furthermore, amounts of dust were compared between other locations swabbed the same day. Based on these relative amounts, it was fairly clear that there is a noticeably larger amount of dust particulate buildup in the lower deck of the hab, with the top of the comms station having the most dust particles than any other area. Furthermore, the overwhelming majority of the observed dust was composed of fine, dark fibers of unknown origin. There were also few light colored particles present in swabbing samples (presumably dirt from outside). There was also a white sheet of paper that was left untouched on the lowest shelf near the stairwell of the Hab, which served as a good background to easily spot the total amount of dust that accumulated over a two week period. Because it was not swabbed or otherwise disturbed until Jan. 05, it served as a good comparison with the other areas of the lower deck. The type and amount of dust present on the white paper was similar to the other swabbed areas of the lower deck at the end of the rotation.

Project 3
Title: Astronomy on Mars
Author(s): Gabriel Skowronek
Description, activities, and results: This project involved two distinct objectives: 1) Determining the period of variation of the Cepheid variable star, SW Tauri and 2) capturing impressive images of deep sky objects for outreach purposes. For the first mentioned project, the RCOS-16 remote telescope was used to take one or two 20-second exposures of SW Tauri each night (with weather permitting). Furthermore, since it was of no interest to process these images in color, only the visual filter was used. To determine the magnitudes, the program AfterGlow was used because of its simplified process. The alternative but more rigorous process in AstroImageJ was not used because of the steeper learning curve which was difficult to tackle with the time constraints and limited internet access for troubleshooting. To obtain more accurate measurements of intensities, the process in AstroImageJ will be implemented post-MDRS. The final step will include plotting the intensity measurements against time to determine the period of variation. Preliminarily, the period seems to be approximately 48 hours, which matches expectations. The second objective aimed to capture color images of M1 (Crab Nebula) and M42 (Orion Nebula). An image of M1 was taken on the MDRS-WF, with RGBLH filters being used with exposures of 75 sec, 150 sec, 300 sec, 150 sec and 300 sec, respectively. This proved to produce an overexposed image so an updated imaging request was sent with smaller exposure times. Due to technical difficulties with the MDRS-WF, this image was not able to be retaken. Similarly, M42 was also not able to be imaged. It is expected that once the difficulties with the MDRS-WF are addressed, the images will be taken and processed remotely.
A black and white image of stars Description automatically generated

Figure 2. (A): An image taken using the RCOS-16, with emphasis shown on the variable star, SW Tauri, and the comparison star with well documented and stable intensity. (B): A processed image of M1 (Crab Nebula) taken using the MDRS-WF.

Project 4
Title: Comparison of Self-selection Traits versus Skill Utilization by Mars Colonists
Author(s): Sara Paule
Description, Activities, and Results: The intention of this project was to examine the skills (e.g., flexibility, leadership, communication, problem-solving, domestic skills, etc.) most used by “colonists” in their day-to-day activities at the Mars Desert Research Station (MDRS) versus their ratings of importance pre- and post-mission. The pre-mission survey was collected via Qualtrics, as will be the post-mission survey, which will be distributed to everyone the week after the mission ends.
During the mission, the crew completed daily surveys from Sol 1 (December 25, 2023) and will complete their final survey today, Sol 12 (January 5, 2024). These were completed at the end of the mission day as planned and converted to digital format the following day.
Data will be analyzed post-mission after completion of the post-mission survey. As of this moment, I can note that there is wide variability among “colonists” in their daily skill usage responses. However, a few kills are more uniformly used. Excepting Sol 12 data, this includes Q2 knowledge – to learn and contribute valuable knowledge (M = 7.2, SD = 1.5), Q13 prioritization – determining task order based upon multiple completion criteria (M = 7.8, SD = 1.5), and Q17 problem-solving – to identify an issue and alternatives for addressing said issue (M = 7.6, SD = 1.5). Most skills were used semi-regularly with the exception of Q6 risk – to take risks and chances (M = 4.0, SD = 1.5).
This is a very small sample size so the research would benefit from additional participants. Future research might include a question about whether or not the individual participated in an EVA that day to ascertain if there is a difference in skill usage for days when on EVA versus remaining at the Habitat.

Project 5
Title: Establishing Best Practices in Mission Reporting from Prior Crew Reports
Author(s): Sara Paule
Description, Activities, and Results: Objectives were to examine past reports to begin to establish best practices by gaining an understanding of common content within prior reports, Specific aims included: 1) establish the average word length of the various report styles, 2) examine whether crew members are most often referenced by surname/family name, given name, or both, and 3) determine common subject matters within reports, such as references to meals, sleep, showering, etc.
Pre-mission all the reports for the past calendar year were downloaded from the MDRS Reports webpage. A sample from each mission of the last year uploaded to the reports repository for both the Journalist Report and Sol Summaries were randomly selected for analysis from the reporting repository. Additionally, random samples of the Journalist Report and Sol Summaries were pulled from the emails of the prior crew (288) that were received pre-mission. In total, 15 crews were identified during that time period and 14 Journalist and 12 Sol reports were acquired using the aforementioned methods.
Word length and character length have been calculated for each.
Length in words: Journalist Report (M = 322, SD = 112) and Sol Summary (M = 377, SD = 259).
Length in characters: Journalist Report (M = 2180, SD = 661) and Sol Summary (M = 2184, SD = 1474).
There was comparable word length and character length though greater variability in the Sol Summary than the Journalist Report.
When it comes to referring to personnel, there is no consistency in reference style. Roles are included only about half the time. Referring to astronauts by first name only is the most common (6 occurrences in each report style), which is higher than surname/family name only (2 occurrences in the Journalist Reports and only 1 in the Sol Summaries) or full names (2 per Journalist and 3 per Sol).
On topicality, references to crew scientific endeavors are by far the most common in both (12 of 14 in the Journalist Reports and 9 of 12 in Sol Summaries). Meals are the second most mentioned topic in each (10 of 14 in the Journalist Reports and 6 of 12 in Sol Summaries) but the Sol Summaries mention relaxation activities as often as meals (6 times out of 12). Those serving as journalists are more likely to discuss ethereal matters, for instance discussing the beauty of the landscape (5 mentions versus 1) or feelings about the experience (8 versus 3 mentions) than those writing the more practically focused Sol Summaries.
A more thorough examination could be conducted by reviewing additional samples from within the same year and/or extending inclusion beyond the past calendar year. Additional report types remain to be analyzed.

Project 6
Title: Martian analog paleotemperature reconstruction
Author(s): Adriana Brown
Description, Activities, and Results: With the onset of cutting-edge geochemistry, the temperature and dynamics of ancient water systems can be determined better than ever before. Performing analysis on carbonates will be essential to understanding climate history on Mars due to their power to record water temperature and isotopic composition – abiotic factors that determine essential biological controls, such as oxygenation and environmental habitability. This project collected sediment and Gryphaea samples from the Tununk Shale to study the coastline of the Cretaceous Western Interior Seaway during the Turonian stage. The samples collected will provide information about the temperature of the seaway during the time the Gryphaea lived using carbonate clumped isotopes, where the carbonate is sourced from the bivalves and, if needed for higher resolution, foraminifera in the sediment samples. Carbonate clumped isotopes measure the frequency of “heavy” isotopes of oxygen and carbon to be bonded together within the carbonate ion – a temperature-dependent process. These paleotemperature results will be integrated into my wider thesis research which aims to reconstruct latitudinal temperature gradients of the Western Interior Seaway – an important control on climate sensitivity.
The objectives of this project were to (1) sample a measured section of sediments up the side of Hab Ridge, (2) identify the percent of carbonate present in sediments, (3) collect Pycnodonte fossils from the Tununk shale near Hab Ridge for carbonate clumped isotope analysis, (4) identify bentonite presence and frequency within the Tununk Shale, and (5) catalog and prepare gryphaea samples for drilling. 90 Gryphaea fossils have been collected from two sites on Hab Ridge and one site from the upper strata of White Rock Canyon. The first Hab Ridge fossil collection site was characterized by a medium to coarse grained quartz-rich sand, containing chert, sandstone, siltstone, and mudstone pebbles. Site one also contained many calcite crystalline structures within the loosely-consolidated sands. The oysters found at this location exhibited recrystallization of calcite and large amounts of sand cemented onto the fossils. Site two was described as a very fine grained, approximately 12 cm thick silt deposit which was black, gray, and dark purple in color. The fossils were smaller than site one and better preserved with no evidence of sand cement. Some streaks of white to light yellow sediment were found throughout site two, interpreted as bentonite material. The collection site at White Rock Canyon occurred along both sides of Cow Dung Road, and were found embedded in the surficial layer of sediment. The Gryphaea at this site were the largest of all collected and the best preserved, with original color and well-defined growth plates intact. The nature of this deposit, i.e. whether these samples were collected in-place or after being transported, will need to be further examined based on the stratigraphy of that area. Additionally, several bentonite “swarm” locations have been noted, with beds documented at Barrainca Butte and sampled at Hab Ridge. These locations will be compared to other published bentonite data so that the age of the samples collected can be constrained.
In the Science Dome, all samples were cleaned, labeled with a sample ID, and cataloged, thereby ready to return to Earth for geochemical analysis at the University of Michigan’s Stable Isotope Facility. 93 1.0 mL sediment samples from two measured sections of Hab Ridge were documented, representing over 150 ft of strata. The sediment samples were labeled and cataloged according to stratigraphic height and site of section. The carbonate percent weight experiment utilized select samples from these sections and the sediment matrix which the Gryphaea were collected from. The sediments were weighed, then dissolved in 0.1 M HCl., and then weighed again. Based on the results from this experiment, it was found that the clay-rich, darkly colored silt that was present at the base of a Hab Ridge section and from the second site of fossil collection had the greatest percent carbonate at 48.37%. The first Hab Ridge fossil yielded a carbonate weight percent of 16.08%. A sediment sample interpreted as a bentonite yielded a 29.24% carbonate weight percent.

A collage of a person in a suit and a person in a suit Description automatically generated

Figure 3. (A): Gryphaea fossil specimen collected from White Rock Canyon. (B): Riya, Adriana, and Gabe collecting sediment samples at Hab Ridge.

Project 7
Title: Mars Exploration by Origami Robot and Drone Scouting or Transportation
Author(s): Aditya Arjun Anibha
Description, activities, and results: Objectives of this study were to apply the concept of transformable origami robots that can exhibit multiple types of locomotion and test their ability to supplement Martian exploration. Investigating the feasibility of transporting the robot using drone and scouting locations of interest prior to exploration was also conducted.
During EVA 3 to Pooh’s Corner, the drone was tested for its carrying capacity within stability limits using a cardboard box container carrying rocks with a suspended transparent fishing line harness to avoid sensor interference and to keep the payload at safer proximity than taping it onto the drone. It was able to carry up to 350 grams before wobbling due to swinging or when directly underneath the drone’s height sensor. The drone would therefore be better used to support the robot rather than carry it due to weight limits.
During EVA 7 to Cowboy Corner, the robot was tested for its ability to traverse mild rocky, uneven and sloped terrain with varied distributions of rocks between 1 cm to 3 cm in diameter. It successfully traveled at a speed of 0.3 m/s for 8 meters in its closed wheel configuration and 57 meters in its open wheel configuration, while supported by a tugging string to lighten its weight to simulate Martian conditions. It climbed three mounds with slope angles varying up to a maximum of 20 degrees.
During EVA 8 to Candor Chasma, the robot traversed two hills of distances 13 meters and 32 meters respectively over mixed rocky and sandy terrain with highly uneven characteristics with the maximum slope angle up to 45 degrees.
Across EVAs and in the Hab, the robot was tested using peristaltic motion with its transformable and controlled origami body as well as jumping about 5 cm allowing it to overcome small obstacles and travel in complex terrain unsuitable for wheels. The robot’s total scale-measured mass on Earth is about 1.5 kg. Its effective scale-measured mass reduced to around 0.9 kg when vertically tugged or supported, which is higher than its expected scale-measured mass on Mars of 0.6 kg. Therefore, we can determine that it would operate freely without the need for a tug-assist on Mars and is an effective method of exploration for uneven terrain that wheeled vehicles cannot traverse safely.

A robot on a rocky surface Description automatically generated

Figure 4. A transformable origami robot with multiple modes of locomotion undergoing tests at a hill near Cowboy Corner, traversing a rocky mound in its open-wheel climbing configuration.

Project 8
Title: Miniaturized Martian Agrivoltaics
Author(s): Eshaana Aurora
Description, activities, and results: Objectives of this project were to 1) comprehensively test the impact of solar and artificial irradiation on crop yields within an enclosed, module-like environment and 2) to understand the feasibility of a miniaturized agrivoltaic farm within the MDRS Greenhab.
The mini farm was successfully assembled in a discreet corner of the Greenhab. Low humidity in the Greenhab was addressed with a makeshift solution—cling wrap placed on top of pots secured by rubber bands with a few open spots for ventilation. Once the saplings had sprouted, the cling wrap was removed, allowing the plants to breathe with higher frequency watering rounds. Notably, the results highlighted that the fully shaded Kale began sprouting around Sol 6, while Bermuda grass seedlings emerged during Sol 9. The findings also underscored that the most robust seed growth occurred in the fully and partially shaded regions, exhibiting more shoots compared to the non-shaded ones, which displayed lower performance as indicated in Figure X.
Following successful troubleshooting and error management, the Arduino and sensors, including temperature, IV Tracer, and solar irradiation sensors, were fully operational for the last few Sols. Each technical issue encountered was meticulously documented, and the datasets were uploaded to a Google Folder. The only dataset that proved elusive was the tracking of shadow depth across a specific Sol, owing to camera problems and cloudy weather at the culmination of our mission.
Importantly, the results indicate the potential advantages of an integrated Agriculture and Photovoltaic (AV) greenhouse module system over separate configurations. The presence of panels and shade not only influenced the microclimate of the plants but also demonstrated the capability to protect plants from the harsh solar radiation on Mars. This underscores the feasibility of an AV system, making it a crucial consideration for optimizing Martian colonization efforts. As we look towards the future of extraterrestrial habitation, the integration of agricultural and solar technologies emerges as a strategic imperative for sustaining life on Mars.

A collage of plants in pots Description automatically generated

Figure 5. Mini Agrivoltaic Farm with the three different shaded sections- Full shade [FS] (bottom left), Partial shade [PS] (middle left) with 45° angled panels to limit sunlight, and No shade [NS] (top left). Kale was planted on the left row of the mini farm and C4 Bermuda grass was planted on the right. The fully shaded plants performed far better than the non shaded ones further fortifying the feasibility of mini AV farms on space greenhouse modules.

Project 9
Title: Image Scanning of MDRS Campus and Surrounding Terrain
Author(s): Riya Raj
Description, activities, and results: Goals for this project were to evaluate the LiDAR, Photo, Room, and 360 Scan modes on IOS Polycam. Obtaining proper visual structures of surrounding terrain is important for expansion and development. For the mission, my project utilized Polycam on IOS to help get terrain structures of the MDRS Campus and nearby areas. Since MDRS is a growing program, we should also look into things that will help with further research! For example, our recent crew EVAs were helpful in identifying large terrain and flat terrain that could potentially be used for solar farming or other habitats. My album includes 500+ scans of the MDRS campus, flat plains, and major structures of Hab Ridge, Kissing Camel, Candor Chasma, etc. This lets us know what exists and what things could be improved for development. Most scans showcase layering, formations, and structure of the terrain. LiDAR also helps with hazard assessments to scan what large rocks could pose a threat in areas of frequent visitors. Within the field of Civil Engineering, such scanning can also help the Earth and people. We can experiment on solutions that can help preserve our beautiful planet while creating the best living places for people/wildlife to thrive!

A person standing in front of a mountain Description automatically generated

Figure 6. Left Figure: MDRS Campus, Middle Figure: Terrain Scan of Hab Ridge, Right Figure: White Rock Canyon Elevated Structure

Project 10

Title: Oxidative Stress Simulation with Hydrogen Peroxide (H2O2) in Kale Seed Hydroponics
Author: Riya Raj
Description, activities, and results: This project aimed to simulate the effects of UV radiation on plants to research more into sustainability and bioregenerative methods.
Hydroponics is a good example of controlled agricultural practices that can help increase plant growth rates and health. During my time at MDRS, I have been using 12-hour intervals with a control vs. variable experiment. The variable experiment includes the addition of H2O2 with the hydroponics module to compare the plant roots and leaves. Supporting data and conclusions will come from:
1) Image scans of the roots/leaves
2) Monitoring the water pH/temp, surrounding temp/humidity
3) Plant cell structure comparisons with microscope views.
Hydrogen peroxide (H2O2) can induce oxidative stress in cells through its role as a reactive oxygen species (ROS). Reactive oxygen species are highly reactive molecules that contain oxygen and include species such as superoxide radicals (O2•−), hydroxyl radicals (•OH), and hydrogen peroxide itself. These species can cause damage to various cellular components, including lipids, proteins, and nucleic acids.
Here’s how hydrogen peroxide can induce oxidative stress:
Formation of Reactive Oxygen Species (ROS): When hydrogen peroxide is present in cells, it can undergo reactions to generate other more reactive ROS, such as hydroxyl radicals. This often occurs in the presence of metal ions like iron or copper, which can participate in Fenton and Haber-Weiss reactions. These reactions involve the conversion of hydrogen peroxide to hydroxyl radicals, which are particularly potent oxidizing agents.
H2O2 + Fe2+ → •OH + OH- + Fe3+
Oxidation of Biomolecules: Once generated, ROS can react with and oxidize various cellular components. For example:
Lipid Peroxidation: ROS can attack and damage lipid membranes, leading to lipid peroxidation. This process produces lipid radicals that can initiate a chain reaction, damaging the cell membrane.
Protein Oxidation: ROS can oxidize amino acid residues in proteins, altering their structure and function. This can lead to the loss of enzymatic activity or changes in protein structure.
DNA Damage: ROS can cause damage to the DNA structure, leading to mutations and potentially cell death.
Activation of Stress Signaling Pathways: The presence of hydrogen peroxide and other ROS can activate cellular signaling pathways involved in stress responses. Plants, for example, have evolved signaling pathways that respond to oxidative stress by activating various defense mechanisms.
Cellular Dysfunction: The cumulative effects of ROS-induced damage to lipids, proteins, and DNA can lead to cellular dysfunction and, in severe cases, cell death.
While hydrogen peroxide is a natural byproduct of various cellular processes and can serve as a signaling molecule at low concentrations, an excessive accumulation of hydrogen peroxide and other ROS can tip the balance towards oxidative stress. Researchers often use hydrogen peroxide to induce oxidative stress in laboratory experiments to study the cellular responses to such stress and gain insights into the mechanisms of oxidative damage and defense.
Radiation can cause oxidative stress in plants through the generation of reactive oxygen species (ROS). When plants are exposed to ionizing radiation, such as gamma rays or X-rays, it can lead to the formation of free radicals and other reactive molecules. These reactive species can then participate in redox reactions, inducing oxidative stress in plant cells.
Reactive oxygen species (ROS) and hydrogen peroxide (H2O2) play important roles in plant biology, and their interactions are crucial for various physiological processes. While ROS can include a variety of free radicals and reactive molecules, hydrogen peroxide is a type of ROS that is particularly relevant in signaling pathways and stress responses in plants.
The results from the scans, photos comparisons, and microscopic views shows that the oxidative stress on the kale plants caused significant leaf and root damage. The hydrogen peroxide caused the kale roots to have short and static growths. They were not continuous and strong compared to the normal H2O roots. The leaves were also bigger in size in the normal experiment, while the hydrogen peroxide caused browning of some of the leaves. Within the microscopic views, the root structure of the normal water experiment showed more rigidity with the xylem and phloem stems.

Project 11
Title: Indoor Air Quality
Author: Riya Raj
Description, activities, and results: The objective for this project was to utilize EPA Indoor Air Quality Standards to build particle and gas sensors.
The importance of air quality is imperative for life support systems here on Earth, ISS, and future life support systems maybe on the Moon or Mars. Maintaining good indoor air quality is crucial for promoting a healthy, comfortable, and productive indoor environment, as well as preventing potential long-term health effects associated with exposure to indoor pollutants. An excess of compounds or particles in the air could cause dizziness, nausea, respiratory diseases, and many other dangerous health issues. There are many countries suffering from the impact of climate change. Learning to properly ventilate areas and keep the air clean will not only keep us healthy, but also improve health on the Earth.
Particulate Matter (PM) includes a mixture of solid particles and liquid droplets found in the air. Some of the particles are too small to be seen with the naked eye and using an electron microscope would be helpful. These “fine” particles could be smaller than 2.5 micrometers and the “inhalable coarse” particles can be smaller than 10 micrometers. Other particles can be large enough to see such as dirt, soot, dust, and smoke.
PM can come from many sources that seem normal to us in our daily lives such as, nitrogen oxide and sulfur dioxide chemical emissions from power plants, industries, and automobiles. The primary particles can be emitted from smokestacks, fires, unpaved roads, fields, and construction sites. The EPA is helpful in creating regulations for the number of particles based on indoor air pollution. Complications of PM include:
Health: It can cause many issues based on the particle size that infiltrates your lungs and it even enters your bloodstream. Most of this can contribute to common respiratory lung diseases and even lung cancer.
Environmental Damage: The particles can eventually settle in the water or on the ground after being carried in the wind over long distances. The water sources can become acidic, soil nutrients can slowly deplete, crops/forest can become sensitive, eventually harming the wildlife.
Visible Impairment: If the particle stays within the atmosphere, it can create haze especially in many parts of an industrial country.
Aesthetic Damage: Most buildings weather away over time due to water or wind, the particle pollution can also stain.
Hypercapnia (hypercarbia) occurs when too much carbon dioxide enters a person’s bloodstream. This can occur when more than 5,000 ppm of CO2 poses a health risk including high chronic levels related to inflammation, reduction in cognitive abilities, kidney calcification, oxidative stress, etc. The minimum amount should be as low as 1,000 ppm and it could be a factor to consider with room occupancy and building ventilation rates.
Regulating carbon dioxide levels in the International Space Station is imperative since microgravity can cause the air to circulate around a person’s face. Our gravity on Earth helps redirect our breath upward when exhaling. Within the microgravity environment, there is a lack of convective buoyancy that results in an environment that becomes diffusion-limited. More research should be explored within this area to help our astronauts work better in long duration space missions!
Sensors were built, but due to delivery issues, concrete data was not collected. The proper data will be collected upon returning to Purdue.

Mid-Mission Research Report – december 30st

[category science-report]

Crew 289 – Deimos
Dec 24th, 2023 – Jan. 6th, 2023

A logo of a planet with planets and stars Description automatically generated

Crew Members:
Commander: Adriana Brown
Executive Officer and Crew Journalist: Sara Paule
Crew Geologist: Eshaana Aurora
Crew Engineer: Nathan Bitner
Health and Safety Officer and Crew Astronomer: Gabriel Skowronek
GreenHab Officer: Riya Raj

Crew Projects:

Title: Remote Station Monitoring
Author: Nathan Bitner
Objectives: Demonstrate usefulness of supplying on-site crew and mission control with real time habitat data
Current Status: We have created a prototype air quality monitor that successfully sends data to an online dashboard. Right now, this board stops functioning after any WIFI connection issues, requiring a manual reset, and quickly drains battery power. In the next two days we plan to fix these issues by putting the raspberry pi into idle mode when not in use and having the board automatically reset itself after any runtime errors. After our prototype is robust enough to function on its own we plan to create four more identical modules for other station rooms and then monitor airlock status on the same dashboard using magnetic reed switches.
EVAs: None

Title: Recording Dust Levels in the HAB
Author(s): Gabriel Skowronek
Objectives: Qualitatively determine the dust levels before and after cleaning procedures
Current Status: Several swab observations have been made throughout the Habitat to understand how much dust was present prior to arrival. In the lower deck of the Hab, swabbing was done underneath the First Aid station and on top of the shelf that holds the comms equipment. In the upper deck, swabbing was done on top of Pantry 3 and the top of the cabinet that has the comms equipment. After initially swabbing, the surfaces were cleaned and wiped down of any dust with a Clorox wet wipe to get a ‘clean’ baseline. In the coming days, swabbing will be done to track subsequent dust accumulation. Only one swab has been conducted thus far, 24 hours after surface cleaning and it was found that there was negligible dust accumulation with only a few dark fibers and fine light colored particles found on the cotton swabs. Swabbing will continue to see how much dust accumulates in the four chosen spots and will be compared against each other to see where dust settles the most.
EVAs: None

Title: Astronomy on Mars
Author(s): Gabriel Skowronek
Objectives: Determine the period of variation for SW Tauri, a Cepheid variable. Furthermore, it will be helpful to make impressive pictures of the Crab and Orion nebulae.
Current Status: Three photometry measurements have been taken of SW Tauri thus far. One has been taken per night but over the coming days, measurements will be taken twice per night at 4-hour intervals to acquire more data points for the light curve. The light curve will begin to take shape over the coming days as intensity measurements will begin to be plotted over time. The initial two measurements were slightly over exposed, so adjustments were made in the exposure time to get proper exposures. There have been some delays in imaging the Crab Nebula as the MDRS-WF seems to image several days after making the initial request. One set of images has been completed but came out to be over exposed, so a new request has been put in with adjusted exposure times and we are currently awaiting images to be taken. In the coming days, the Orion Nebula will also be imaged but further research will need to be done into the proper exposure times.
EVAs: None

Title: Comparison of Self-selection Traits versus Skill Utilization by Mars Colonists
Author(s): Sara Paule
Objectives: Examine the skills (e.g., flexibility, leadership, communication, problem-solving, domestic skills, etc.) most used by “colonists” in their day-to-day activities at the Mars Desert Research Station (MDRS) versus their ratings of importance pre- and post-mission.
Current Status: Pre-mission data has been downloaded from Qualtrics. The crew has completed 5 days-worth of daily surveys from Sol 1 (December 25, 2023) through today, Sol 6 (December 26, 2023). These were completed at the end of the mission day as planned. Paper survey results have been entered into an Excel database in preparation for post-mission data analysis. The crew will continue to complete daily surveys throughout mission and paper data will be converted to digital format. Post-mission surveys will be sent out after return to Earth.
Title: Establishing Best Practices in Mission Reporting from Prior Crew Reports
Author(s): Sara Paule
Objective 1: Establish the average word length of the various report styles.
Objective 2: Examine whether crew members are most often referenced by surname/family name, given name, or both.
Objective 3: Determine common subject matters within reports, such as references to meals, sleep, showering, etc.
Current Status: Pre-mission all the reports for the past calendar year were downloaded from the MDRS Reports webpage. A sample from each mission of the last year uploaded to the reports repository for both the Journalist Report and Sol Summaries have been randomly selected for analysis. Additionally, random samples of the Journalist Report and Sol Summaries were pulled from the emails of the prior crew (288) received pre-mission. In total, 15 crews were identified during that time period and 14 Journalist and 13 Sol reports were acquired using the aforementioned methods. Word length and character length have been calculated for each. Next steps will be to begin flexible qualitative coding to assess content.
EVAs: None

Title: Martian analog paleotemperature reconstruction
Author(s): Adriana Brown
Objectives: (1) Sample a measured section of sediments up the side of Hab Ridge and (2) identify the percent of carbonate present in sediments, (3) collect Pycnodonte fossils from the Tununk shale near Hab Ridge for carbonate clumped isotope analysis, (4) identify bentonite presence and frequency within the Tununk Shale, and (5) catalog and prepare samples for drilling.
Current Status: Progress on all objectives has been made. 36 fossils have been collected from Hab Ridge, cleaned, and catalogued. They are ready to return to Earth for geochemical analysis. The carbonate percent weight experiment is up and running with initial sediment samples from fossil collection sites dissolved in 0.1 M HCl and currently drying. 93 1.0 mL sediment samples from two measured sections of Hab Ridge have also been collected, and selected samples from these sections will be added to the percent carbonate experiment this upcoming week. These samples will be fully catalogued at MDRS and then will be ready to return to Earth for stable carbon isotope analysis at the University of Michigan. Lastly, several bentonite “swarm” locations have been noted, with beds documented at Barrainca Butte and sampled at Hab Ridge.
EVAs: Two EVAs to Hab Ridge to collect fossils and sample two measured sections, one EVA to Barrainca Butte to evaluate Pycnodonte presence and bentonite swarms.

Title: Mars Exploration by Origami Robot and Drone Scouting or Transportation
Author(s): Aditya Arjun Anibha
Objectives: Apply the concept of transformable origami robots that can exhibit multiple types of locomotion and test their ability to supplement exploration. Investigate feasibility of transporting robot using drone and scouting locations of interest prior to exploration.
Current Status: During EVA 3, the drone was tested for its carrying capacity within stability limits with cardboard box container carrying rocks with a suspended transparent fishing line harness to avoid sensor interference and keep payload at safer proximity than taping it onto the drone. It was able to carry up to 350 grams but wobbled due to swinging or when directly underneath the drone’s height sensor. The drone would therefore be better used to support the robot rather than carry it due to weight limits.
During EVA 7, the robot was tested for its ability to traverse mild rocky, uneven and sloped terrain. It was successfully made to travel at a speed of 0.3 m/s for 8 meters in its closed wheel configuration and 57 meters in its open wheel configuration, while supported by a tugging string to lighten its weight closer to Martian conditions. This was across uneven offroad terrain with varied distributions of rocks between 1 cm to 3 cm in diameter. It climbed three mounds with slope angles varying upto a maximum of 20 degrees. The robot’s total scale-measured mass on Earth is about 1.5 kg. Its effective scale-measured mass reduced to around 0.9 kg when vertically tugged or supported, which is higher than its expected scale-measured mass on Mars of 0.6 kg. Therefore, we can determine that it would operate freely without the tug on Mars.
The robot will now undergo maintenance before executing another EVA in Candor Chasma to test it with diverse terrain environments, where testing its jumping and peristaltic motion capabilities will be a priority. The drone will be used in place of a tugging string to support the robot’s motion and lighten its weight such that it experiences motion similar to that which it would on Mars
EVAs: EVA 3 for Drone Capacity Testing with Suspended Payload Harness and Drone Scouting of Candor Chasma conducted from Pooh’s Corner, EVA 7 for Origami Robot Exploration Testing at Cowboy Corner

Title: Miniaturized Martian Agrivoltaics
Author(s): Eshaana Aurora
Objectives: To comprehensively test the impact of solar and artificial irradiation on crop yields within an enclosed, module-like environment. To understand the feasibility of a miniaturized agrivoltaic farm within the MDRS Greenhab.
Current Status: The mini farm has been successfully assembled in a discreet corner of the Greenhab, addressing the low humidity issue caused by a few open spots with a makeshift solution—cling wrap placed on top of pots secured by rubber bands. Notably, the preliminary results indicate that the fully shaded Kale sapling has sprouted the first few shoots, while the non-shaded ones are yet to show signs of growth. Following successful troubleshooting and error management, the arduino and sensors, including temperature, IV Tracer, and Solar irradiation sensors, are now fully operational. The next phase involves attaching these sensors to the mini farm for real-time data collection. Over the coming days, a routine will be established, wherein data will be read and uploaded to Google Drive during the communication window, and plants will be watered and monitored for continued sprouting and growth.
EVAs: 0

Title: LiDAR Scanning of Terrain
Author(s): Riya Raj
Objectives: Will use phone apps to provide accessible scans of the terrain.
Current Status: I have been using Polycam on IOS to help me get more visuals on the structures that are near the MDRS campus. The most important thing to keep in mind is to include efficiency if you want to expand. For example, our recent crew EVAs were helpful in showing me large terrain and flat terrain that could potentially be used for solar farming or other habitats! Since MDRS is a growing program, we should look into things that will help with further research! I took an image scan and LiDAR scan of Hab Ridge and the MDRS campus. This lets us know what exists and what things could be improved for development. I have been loading 150+ scans during our COMMS windows to see how we can effectively image all structures. Most scans showcase layering, formations, and structure of the terrain!
LiDAR also helps with hazard assessments to scan what large rocks could pose a threat in areas of frequent visitors. As someone who is in Civil, I would like my work to reflect in what ways we can help the Earth and people. We need to learn to adapt and mitigate solutions to the current climate change issues. Expanding the campus with more renewable sources such as solar would be helpful!

Title: Radiation on Kale:
Author: Riya Raj
Objectives: Work on sustainable methods of growing veggies using simulations in hydroponics to provide fresh nutrients for the body.
Current Status: Hydroponics is a good example of controlled agricultural practices that can help increase plant growth time rates and heath. During my time at MDRS, I have been using 12-hour intervals with a control vs. variable experiment. The variable experiment includes the addition of H2O2 with the hydroponics module to compare the plant roots and leaves. I will be conducting image scans of the roots/leaves while monitoring the water pH/temp, surrounding temp/humidity, and plant cell structure with microscope views.
Hydrogen peroxide and radiation are distinct in their effects on plants. Radiation, such as ultraviolent (UV) radiation or ionizing radiation, can lead to the formation of reactive oxygen species (ROS) within plant cells. Similarly, hydrogen peroxide is a reactive oxygen species. When plants are exposed to stressors like radiation or hydrogen peroxide, they may experience oxidative stress, which can cause damage to cellular components such as proteins, lipids, and DNA.
Space exploration cannot happen without understanding what makes humans thrive. Learning from many agricultural practices here on earth has helped us look into sustainable ways to support human living for long term space missions. Bioregenerative life support systems are the way to include efficiency and optimization in human health. We should look further into how the extreme microgravity environment can impact plant growth. With bioregenerative life support systems, we can learn to regenerate water, oxygen, and food needed by the astronauts. I hope to help in the field of controlled agriculture practices to help countries in regions that are unable to produce proper crops.

Title: Indoor Air Quality
Author: Riya Raj
Objectives: Use sensors to monitor air quality
Update: This project will include basic air quality sensing with an EPA Dust Particle Sensor to analyze the intensity of PM2.5 within the air. The crew was successful in changing the air filter for the hab so I will be using the old filter to test the sensor. I am still waiting for other parts for the sensors to come in. I will also be building another sensor that will help detect the CO2, Ozone, TVOC, Relative Temp/Humidity, and PM 2.5 based on a specified time frame.
The importance of air quality is imperative for life support systems here on Earth, ISS, and future life support systems maybe on the Moon or Mars. Maintaining good indoor air quality is crucial for promoting a healthy, comfortable, and productive indoor environment, as well as preventing potential long-term health effects associated with exposure to indoor pollutants. An excess of compounds or particles in the air could cause dizziness, nausea, respiratory diseases, and many other dangerous health issues.
There are many countries suffering from the impact of climate change. Some are experiencing toxic smog due to inadequate transportation methods and other sources as we know of. Learning to properly ventilate areas and keep the air clean will not only keeps us healthy, but also make the Earth happy!

End-mission Research Report – December 22nd

[category science-report]

Mars Desert Research Station
Final Research Report

Crew 288 – Phobos
Dec 9th, 2023 – Dec 23rd, 2023

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Riley McGlasson
Crew Geologist: Hunter Vannier
Crew Engineer: Jesus Adrian Meza Galvan
Health and Safety Officer: Jilian Welshoff
Green Hab Officer: Ryan DeAngelis
Crew Journalist: Lipi Roy

CjtyNlxr3vsost0Z1tkQ_lbEK4HVcqpWpXSN5COO2_4bVgfITqyXCsHn4_M9oM5VcZg56yLFMmS5YPPduA9mOC8kGAn1q1o4CXNaCBK2Hctb3CjfJAzNCnbkM5mdI_IwOlFYzWa1RUjzd1cYByM8aQ

Research Projects:

Title: Noninvasive search for water
Author: Riley McGlasson
Description, activities, and results: GPR observations were taken at Watney Road, Compass Rock, Brahe Highway, and Hab Ridge. During EVA 3 two 3D GPR grids were taken at the turnoff to Watney Road (WR). One of these was a smaller 15’x15’ grid with 3’ spacing above the dry stream bed, which we used to train the rest of the EVA crew in how to conduct GPR surveys. The second WR grid (WR02) was 36’x36’ with 3’ spacing. WR02 encompassed the dry stream bed and adjacent sandy material. Six total 2D transects were also taken at three sample sites at Kissing Camel Ridge. Unfortunately, there was an error with the radar’s survey wheel, so none of these observations are usable. After EVA 3, this error was fixed, and more data was able to be collected during the remaining 3 GPR EVAs. During these, 100’ x 100’ 3D grids were taken with 10’ spacing at the survey sites, along with an additional 2D transect was taken across ~300’ of material in the same region for quicker analysis. We confirmed that the survey wheel error was fixed, and initial analysis of the 2D transect of the Compass Rock site produces reasonable velocity values for a damp sandy material. The 3D grids will be analyzed back on Earth and compared with spectroscopy data taken at the same sites.

1gjWZ5A3wzq16z3v1Y4K9n__v-nM62jkim-vrqAwfTzik5kn_jdtyHf33DfgwBvVjTFeH8eQNhpZNQK7q1GxWcr-zhep9SqeCptWIXYtE1S8j9LaIWem8_S6eH9mORMEm-WFyM7SXGesKtfisl2UrQ

Title: Refining orbital data with in-situ analysis
Author(s): Hunter Vannier
Description, activities, and results: Major objectives of this study were to compare grain size predictions from orbital data to in situ observations, and assess effectiveness of boulder sampling at the base of Kissing Camel Ridge in obtaining representative samples of the often out of reach stratigraphy. Both of these objectives can improve our ability to define realistic science goals and predict terrain morphology when planning missions to other planetary bodies with orbital data. Another goal was to obtain and determine origin of volcanic rocks in southern field area.
Through EVAs to Barainca Butte, Kissing Camel Ridge (east and west), Hab Ridge, Somerville Overlook, and Compass Rock, we worked to achieve these objectives. Boulder and grain size analyses were conducted during two EVAs atthe Kissing Camel Ridge, which have been compared to orbital estimates. Some grain-size estimates were accurate (ex. prediction of 1-3 cm cobbles on gravel bar), but as expected, subtleties in the orbital data were not appreciated until on foot, such as disproportionate darkening of orbital images due to cobbles on a largely light-toned sand-dominated stream bed. The effectiveness of sampling boulders at base was variable at Kissing Camel and Hab Ridge; often, the top stratigraphic unit dominated and boulders from other lithologies were not present because most of the layers had been converted to soil. When found at the base of sheer ridges, boulders from multiple units were not observed in orbital data. Additional samples of paleosols were obtained near the base of Kissing Camel W to provide further point of comparison to orbital data. Overall, sampling boulders was useful in obtaining samples from layers otherwise unreachable, but picking sites with less vs. more diversity of boulders was not accurately predicted.
We obtained spectra and samples of at least three, possibly four different igneous units (basaltic andesite, andesite, diorite) transported fluvially to the Barainca Butte area from both Henry Mountains and Capitol Reef. Near Barainca we identified a very high concentration of volcanic rocks in that area that were generally absent in regions north of Zubrin’s head. The samples are identifiable based on phenocryst population and tied to igneous units described in the Geology of Selena Quadrangle, Utah (Williams and Hackman, 1971). The more mafic extrusive rocks are most plentiful and likely sourced from Capitol Reef, and the intrusive intermediate from Henry Mountains. The fluvial pathway from source to MDRS is still not understood, along with why this area of MDRS has so many more igneous cobbles than others. We observed two 0.75 m rounded basaltic boulders, so presumably the deposition required significant energy.
Spectra and samples have also been obtained within GPR grids to complement the radar data set with spectral and geologic characterization of the top ~5 cm of unique units within each grid. Preliminary spectral analysis of a site atop Hab Ridge within grey soil devoid of plants yielded a surface crust that appeared like significantly hydrated clay, yet the subsurface that yielded the majority of material appeared to have little hydration. There was also diversity in forms and depths of gypsum, some of which showed signs of oxidation. Not only does this compliment the science goals of radar, but is an important consideration when evaluating hydration of soils at depth for in-situ resource utilization.

vuutK63PgA8FAjWcgnysLHoEnUfzO3Z-lenL-KW2uHc3LKjGFlT7NQTk37hFyigF0idFeq36uf7TPTBuMoRxpAQAaxisI8wntqRr2evsMygpgNSsWOG178aNGregg6YjpZ5uc3amZFImbAS5vmG3ww

Figure 2. (A): Obtaining spectrum of large rounded vesicular basaltic boulder. Red arrows points to abundant igneous rocks in the vicinity, Barainca Butte in the background. (B): Sampling station containing igneous rocks with multiple lithologies.

Title: Remote sensing for ISRU
Author(s): Cesare Guariniello
Description, activities, and results: The goal of this project is to test the use of remote sensing performed in various locations to support advanced In-Situ Resource Utilization. In particular, assessment of mineralogy via remote sensing will provide information about material abundance. Laboratory study of thermal inertia and its correlation with bulk size (sandy vs. rocky) will add one more variable to the study. Thermal Inertia is correlated to particle size and cohesiveness of the material, which in turn suggests the most appropriate tools to effectively collect the material for processing. Water content is assessed via the analysis of the depth of absorption bands in the spectra. This year’s focus has been on consolidated clay rocks. Samples have been collected for this project in the vicinity of Barainca Butte, at the foot of Skyline Rim, and along Galileo Road between Compass Rock and Somerville Overlook. These samples will be subject to experiments related to water content.

Title: Semiconductor processing
Author(s): Jesus Meza-Galvan
Description, activities, and results: The project was focused on the feasibility of basic semi-conductor manufacturing at the station. Two main experiments were conducted to explore silicon-oxide growth, and photolithography. The goal of the first experiment was to determine if oxide growth is possible in one of the lab ovens. A set of silicon samples were placed inside Oven #1 as shown in Figure 4a. A graduated flask with 1 liter of water was placed inside the oven just beneath the samples to maintain a high moisture environment. A thermocouple was placed approximately 2 inches above the samples to read the local oven temperatures. The samples were then annealed at a maximum oven temperature of 250 °C for a total of 2 hours, 4 hours, and 8 hours. Quantitative analysis of the oxide films will be performed using ellipsometry at Purdue. Qualitatively, there is no visual distinction between the samples indicating little to no oxide was formed. This is as expected given the temperature of the oven was lower than the typical growth temperature of silicon-dioxide in the range of 400 – 800 °C. In order to reliably grow oxide at the station, the oven temperatures must be increased. For the second experiment, a set of silicon samples with a photo-sensitive polymer (photoresist) was prepared prior to coming to MDRS. The laminar flow hood was outfitted to perform UV-exposure of photoresist as shown in Figure 4b. A set of UV-safety goggles was used as a filter for the overhead lamp of the hood to prevent unwanted exposure of the resist. A Dremel stand was used as a makeshift photo-aligner to hold a handheld UV lamp at a constant distance away from the sample and perform controlled UV exposures of the resist as shown in figure 4c. A set of samples with varying exposure time, and varying working distance were made. Qualitatively, the experiment produced several good exposures of a microscope calibration pattern onto the photoresist layer. The success of the procedure will be determined quantitatively by measuring the dimensions of the samples produced against a calibrated microscope at Purdue.

_Td2BfsZW2yUOyrEPpOpwUHj6PqQZMFxT6rKxg4jbvwrGR2nv26Pm6mOdrOCk8rHa_s5DwV7W8vR1y49aN0OXS53AvLxPy1PmzGjWp-I3U9hmCRL2g-NX3kOO8c7ZewIJVvZjfl3CQQb3h5kIvYh4w

Figure 3. Semiconductor Processing at MDRS. a) Silicon-oxide growth experiment in Oven #1. b) Photolithography set up inside laminar flow hood. c) Photolithography exposure.

Title: Reducing stress in isolated environment

Author(s): Lipi Roy, Ryan DeAngelis, Jilian Welshoff
Description, activities, and results: The crew consulted some of the sensors brought to MDRS for this project. However, formal research was not conducted, and test surveys were not administered, because IRB approval was not received in time for the mission.

Title: Astrophotography with the MDRS WF and Solar Observatory outreach
Author(s): Cesare Guariniello
Description, activities, and results:
Solar Observatory: visual observations on one day with the Crew Engineer and the Journalist. Various small problems with the telescope (modified Home Station, and some components left out of place by previous crews) were solved. The observatory bottom shutter also had to be troubleshot. All days not spent on EVA were at least partly cloudy during the day, thus preventing further solar observations.
Astrophotography: MDRS-WF was used to produce high-quality photos of M31 (Andromeda Galaxy), Barnard 33 (Horsehead Nebula), Leo Triplet, M42 (Orion Nebula), M1 (Crab Nebula) and some photos of smaller galaxy with quality that could be improved in postprocessing. Further WCS data are necessary to align images from the MLC-ROS16 telescope.

mek8npI4S-MVsNTMasd71zIXSBd6GJIFRzD5Ous_VWHBx2FF9NeEKdIgHQ6iVHRAKCRH45Eru2GIeyaRpqBhEQpSKBilw1f5GayTPPOZ65B6dGHFbdzl7Mu3KFC_FxjIhL7Gq8E4S1FcP3QZdYu2yQ

Title: Station monitoring
Author(s): Jesus Meza Galvan and Jilian Welshoff (proposed by Nathan Bitner – MDRS 289)
Description, activities, and results: The goal of this project is to study what information is most useful to analog astronauts during missions, as well as how this information is leveraged for day-to-day mission planning. A prototype of the sensor payload was completed which integrates temperature, humidity, VOC, CO2, and dust particle sensors with a raspberry-pi and battery package. The sensors have been coded by Purdue mission support who will remotely collect environmental data. Crew 289 will continue the project and create additional sensor payloads to place one monitoring station in each of the MSRS modules, as well as sensors on the air locks to determine if they are closed.

Title: Samples transportation with drones
Author(s): Cesare Guariniello
Description, activities, and results: In past missions at MDRS, drones have been used to prospect potential areas of geological interest. This conceptual project had the goal to prove the feasibility and usefulness of using a drone to transport payloads from the station to astronauts in EVA and vice versa. The capability of the drone to carry small payloads while maintaining maneuverability and safety was successfully tested before the mission. During the mission, part of the EVA to Skyline Rim (EVA #5) was spent in surveying the Hab Ridge for suitable locations for this experiment. Later, two crew members were trained in drone piloting, so as to be able to operate the small drone under the supervision of a crew member who holds a drone pilot license. During EVA #9, the drone was launched from the station with a small rock sample and a message onboard. Both items were received by the EVA astronauts, that successfully used the drone to return a rock sample to the station. The drone was then sent back with a food sample (representative of potential use of a drone to provide tools or support to astronauts on EVA), used by the EVA crew to record footage of the GPR experiment, before being flown back once more to the station.

Title: Chez Phobos
Author(s): Lipi Roy (et al.)
Objectives: Creating new recipes with shelf-stable food at MDRS
Description and Results: Crew 288 members proved that it was quite possible to create healthy, tasty recipes from shelf-stable food items at MDRS habitat. Many new recipes were successfully implemented and very much appreciated by the MDRS members. Riley’s Hab-burger, Ryan’s Pad-Thai and carrot cake, Cesare’s Italian pizza and baked ziti, Jilian’s Mujadara, Hunter’s spam fried rice and tuna-tomato pasta, Jesus’s Spanish rice, and my chickpea curry, kidney beans curry, and potato parathas; all created with minimal outside ingredients! For example, our ‘meal of the mission’ – spam fried rice was prepared using rice, dehydrated eggs, spam, dehydrated onions, dehydrated tomatoes, soy sauce, chilli peppers, salt, garlic powder, black pepper; all available in the hab!

AEE9AfTd1OCdD-TOHnjq6b82DQpGiv35izvw44wAglIk2_XyN7ON8iRBsVhEN2c_YJL3jVr0tZk5iU_bFQslMwLo8S8poW4evLhfG-0A7t6z2mB5gfklG50kdY0e2fFVhI75AHOyrOiicEKAQAABJQ

Mid-Mission Research Report – December 16th

[category science-report]

Mars Desert Research Station
Mid-Mission Research Report

Crew 288 – Phobos
Dec 9th, 2023 – Dec 23rd, 2023

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Riley McGlasson
Crew Geologist: Hunter Vannier
Crew Engineer: Jesus Adrian Meza Galvan
Health and Safety Officer: Jilian Welshoff
Green Hab Officer: Ryan DeAngelis
Crew Journalist: Lipi Roy

Crew Projects:

Title: Noninvasive search for water
Author(s): Riley McGlasson
Objectives: Assess near-surface moisture in the top 10 cm of material
Current status: GPR observations were taken during EVAs 3 and 6. During EVA 3 two 3D GPR grids were taken at the turnoff to Watney Road (WR). One of these was a smaller 15’x15’ grid with 3’ spacing above the dry stream bed, which we used to train the rest of the EVA crew in how to conduct GPR surveys. The second WR grid (WR02) was 36’x36’ with 3’ spacing. WR02 encompassed the dry stream bed and adjacent sandy material. Six total 2D transects were also taken at three sample sites at Kissing Camel Ridge. Unfortunately, there was an error with the radar’s survey wheel, so none of these observations are usable. After EVA 3, this error was fixed and more data was able to be collected during EVA 6. During EVA 6 one 100’ x 100’ 3D grid was taken with 10’ spacing just NW of Compass Rock. An additional 2D transect was taken across ~300’ of sandy material in the same region. We confirmed that the survey wheel error was fixed, and initial analysis of the 2D transect produces reasonable velocity values for a damp sandy material. The 3D grid will be analyzed in the coming days.
EVAs: EVA 3 to Watney Road and Kissing Camel Ridge and EVA 6 to Compass Rock

Title: Refining orbital data with In-Situ analysis
Author(s): Hunter Vannier
Objectives: Obtain and determine origin of volcanic rocks in southern field area. Compare grain size predictions from orbital data to in situ analysis. Assess effectiveness of boulder sampling at base of Kissing Camel Ridge in reconstructing its lithology.
Current status: We have obtained spectra and samples of multiple volcanic units (basaltic, andesitic) transported fluvially to the Barainca Butte area and identified a very high concentration of volcanic rocks in that area. Now the samples need to be further characterized (phenocryst populations) and tied to volcanic units in the closest proximity to MDRS, and spectra needs to be obtained for each sample. Boulder and grain size analyses were conducted during two EVAs to the Kissing Camel Ridge, which have been compared to orbital estimates. Some grain-size estimates were accurate, but as expected, subtleties in the orbital data were not appreciated until on foot. The effectiveness of sampling boulders at base was variable, and boulders representing more variability were not observed in orbital data. Additional samples of paleosols were obtained near the base of Kissing Camel W to provide further point of comparison to orbital data.
Spectra and samples have also been obtained within GPR grids to complement the radar data set with spectral and geologic characterization of the top ~5 cm of unique units.
EVAs: Three EVAs have been performed: one to Barainca Butte (volcanic samples), and two to Kissing Camel (boulder, fluvial, paleosol samples)

Title: Remote sensing for ISRU
Author(s): Cesare Guariniello
Objectives: Demonstrate the use of instrumentation for structural analysis of potential locations for building on Mars
Current status: Since multiple spectra and samples have been collected in past missions, this year I am focusing on the search for kaolinite or other non-swelling clays. The largest abundance of these materials has been reported on Skyline Ledge, therefore some samples have been collected from the scree slopes of Barainca Butte and of Skyline Rim. Spectra will be collected at a later time. Another location that will be explored is the Northwestern Region (Brahe Highway to Sea of Shells).
EVAs: Samples for this project specifically collected in two EVAs: Barainca Butte (scree slope from Barainca) and Skyline Rim (material from the upper layers, Mancos Shale)

Title: Semiconductor processing
Author(s): Jesus Meza-Galvan
Objectives: Feasibility study to establish procedures for semi-conductor manufacturing at the station.
Current status: A plan of execution has been established. The project will have two main experiments. The first experiment will determine if oxide growth is possible in one of the lab ovens. Oven #1 has been identified as the best candidate for the experiment. Two sets of silicon samples will be baked at maximum temperature for a total of 8 hours. One set of samples will be baked in the atmosphere, while the second set of samples will be baked in a high moisture environment. To raise the moisture in the oven, a large pan of water will be placed on the bottom rack and will be replenished as needed. For each experimental run, a section of silicon will be broken off after 2 hours, 4 hours, and 8 hours of growth. The oxide thickness will be measured out of sim at Purdue. For the second experiment, a set of silicon samples with a photo-sensitive polymer (photoresist) has been prepared prior to coming to MDRS. A small photolithography set-up is being prepared to expose a microscope calibration pattern onto the photoresist layer. The success of the procedure will be determined by measuring the dimensions of the test pattern against a microscope.

Title: Reducing stress in isolated environment
Author(s): Lipi Roy, Ryan DeAngelis, Jilian Welshoff
Description: IRB approval not yet received

Title: Astrophotography with the MDRS WF and Solar Observatory outreach
Author(s): Cesare Guariniello
Objectives: Produce high-quality photos of deep sky objects and train the crew to the use of solar observatory.
Current status:
Astrophotography: MDRS-WF produced high-quality photos of M31 (Andromeda Galaxy), Barnard 33 (Horsehead Nebula) and some photos of smaller galaxy with quality that could be improved in postprocessing. WCS data are necessary to align images from the MLC-ROS16 telescope.
Solar Observatory: visual observations on Wednesday with the Crew Engineer and the Journalist. Troubleshot the telescope and the observatory. Following days spent on EVA, with return after suitable time for solar observation.

Title: Station monitoring
Author(s): Jesus Meza Galvan and Jilian Welshoff (proposed by Nathan Bitner – MDRS 289)
Objectives: The goal of this project is to study what campus information is most useful to analog astronauts during missions, as well as how this information is leveraged for day-to-day mission planning.
Current status: The sensor payload is being constructed. Temperature, humidity, VOC, CO2, and dust particle sensors have been integrated with raspberry-pi and battery package. The sensors are being coded by Purdue mission support who will remotely collect environmental data.

Title: Samples transportation with drones
Author(s): Cesare Guariniello
Objectives: Test the use of drones for transportation of samples and instruments
Current status: The transportation has been tested before the mission. During the mission, on Sol 0, the drone automatic homing system did not work. The commander will train a crew member to fly the drone, so as to be able to perform the experiment with one pilot commanding the drone from the habitat to the Hab Ridge, and the other pilot flying the drone back.
EVAs: Exploratory EVA to Hab Ridge.

Title: Chez Phobos
Author(s): Lipi Roy (et al.)
Objectives: Creating new recipes with shelf-stable food at MDRS
Current status: Three new recipes were tried with the shelf-stable food: fried rice with a twist of parmesan, Indian chickpea curry, and potato parathas. Fried rice included rice, freeze dried onions, eggs, bell peppers, oil, soy sauce and a range of spices. Chickpea curry included chickpeas, tomato powder, freeze dried onions, and a range of Indian spices. Potato parathas were a definite hit with the crew, especially as I served them after they came back from a long walking EVA yesterday. They were made by stuffing a mashed potato mixture (with spices) into whole wheat dough balls. They were then flattened and fried in minimal oil. Though leaning towards more calories, the frying adds to the taste of the potato stuffing inside the dough.
Problems faced – The potato parathas, though really liked by everyone, were very difficult to prepare with freeze-dried mashed potatoes. This was because water needed to be added to them and the extra moisture made it very difficult to roll the dough. I had to leave the rolling pin alone and start doing it by hand.
What next? – I will be trying out new recipes and adding on to the list!

Astronomy Report – December 4th

[category  astronomy-report]

Name: Enkhtuvshin “Dono” Doyodkhuu

Crew: 287

Date: 04 December 2023

MUSK OBSERVATORY

Solar Features Observed: Sunspots. I’ve spent the morning and afternoon getting used to the observatory. I’m so impressed with the capabilities of the telescope. This was my first time working with SharpCap, and I’ve managed to capture an image of a few sunspots.

Images submitted with this report: See attached.

Problems Encountered:

1. The telescope was not turning at first at all. I’ve changed the motor speed to 7 and it started moving. My guess is that motor speed 5 is not strong enough to move the telescope around, and I may need to loosen some screws first. Requesting support on this.

2. I can’t seem to find the Gamma on SharpCap. It is supposed to be under “Image Controls” but all I see is the Brightness option. Maybe the SharpCap 4.0 is different from what is in the Quick Guide, or I need to add it onto the Image Option from somewhere else. Requesting support on this.

Astronomy Report – December 5th

[category  astronomy-report]

Name: Enkhtuvshin “Dono” Doyodkhuu

Crew: 287

Date: 05 December 2023

MUSK OBSERVATORY

Solar Features Observed: Sunspots. Solar flare/prominence—I’m not completely sure which one it is. I’ve had a very good view of it on the live feed of the camera, but I haven’t managed to capture a good image of it as a .jpg file. I’ll try out the other programs tomorrow and get a better look.

Images submitted with this report: See attached.

Problems Encountered: I am not able to bring out the granules no matter what I try. It seemed simple enough looking from the video tutorials. I’ve tried tweaking the exposure, gain, brightness, and the tuners in a variety of ways. I’ve also tried tweaking the focus with each option. Any advice and directions on this?

Astronomy Report – December 7th

[category  astronomy-report]

Name: Enkhtuvshin “Dono” Doyodkhuu

Crew: 287

Date: 07 December 2023

MUSK OBSERVATORY

Solar Features Observed: Sunspots.

Images submitted with this report: See attached.

Problems Encountered: I still was not able to bring out the granule details. These will be my last observations at the Musk Observatory since our sim is ending today, and we’ll be receiving a documentary crew on station tomorrow. I have not had much experience on telescopes prior to this rotation, and this has been a valuable experience for me. I will continue to improve my knowledge and proficiency with telescopes from here on out. Special thanks to Peter! Cheers!

Crew 287 Mid-mission Research Report – 03Dec2023

[title Midmission Research Report – December 3rd]
[category science-report]

MDRS Rotation #287: Alpha Crew

· Commander: Enkhtuvshin “Dono” Doyodkhuu

· HSO & Green Hab Officer: Dulsaikhan “Duluu” Zorig

· Engineer: Munkh-Erdene “Muggi” Altankhuyag

· Geologist: Davaa-Ochir “Davaa” Dashbaatar

· Psychologist & Microbiologist: Tungalag “Tungaa” Baterdene

· Journalist: Munkhnaran “Sunny” Davaatseren

Date: November 27th, 2023 – December 3rd, 2023. Sol 1 up to Sol 7.

Mission Goals:

· Development of MARS-V Training Program

· Experimentation with Mars Analog Food

· Testing MARS-V Analog Suit

· Improving Mars Analog Station Structure

· Learning from MDRS Operational Structure

1. Training Program Development:

Crew members have engaged in various EVAs, showing adaptability and proficiency in Mars-simulated conditions. EVA reports indicate successful completion of set objectives, with a focus on geological and microbiological explorations.

Team dynamics and psychological resilience have been tested through diverse tasks, reflecting the ‘Challenge Takers’, ‘Science Takers’, and ‘Experience Takers’ aspects of the program.

2. Mars Analog Food:

A mix of station-provided and freeze-dried Mongolian food has been used, with crew members creatively preparing meals. Feedback on packaging, cooking instructions, and quality will contribute to improving the food system for future missions.

3. Analog Suit Testing:

Crew members have tested the MARS-V analog suits, noting ergonomic aspects and suggesting improvements, particularly in helmet design and life support systems.

4. Mars Analog Station Structure:

Daily operations have highlighted the importance of power and water management. The crew’s adaptation to station life provides valuable insights into the living conditions and necessary resources for an effective Mars station.

5. Learning from MDRS:

Crew has been closely monitoring and learning from MDRS protocols and mission support systems, which will be instrumental in developing the MARS-V station.

Challenges:

· Rover battery management—addressed promptly.

· The need for more efficient water usage and conservation strategies.

Physical and Mental Health:

Crew members report good physical health and high morale. Regular exercise, meditation, and team bonding activities have been beneficial.

Weather:

Generally sunny with some cloud cover, aiding in EVA operations.

Next Steps:

· Continued exploration and documentation using the drone.

· Focus on geological and microbiological sample collection.

· Testing of aeroponic equipment in the Greenhab.

· Further development of MARS-V training program elements and station design.

Conclusion:

As Crew Rotation #287 approaches the midpoint of its mission, the team has shown remarkable adaptability, teamwork, and scientific rigor. The experiences and data gathered so far are not only contributing to the immediate mission goals but also laying a solid foundation for the future development of the MARS-V analog station in the Gobi, enhancing training programs, and refining Mars analog food and suit systems. The crew remains enthusiastic and committed to maximizing the outcomes of the remaining mission days.

P.S. Attached are the EVA map tracking we have done the past week, and two edited drone videos for entertainment.


Post excursion.mp4
Drone Footage.mp4

Research Report – November 24th [status draft

[category science-report]

END-MISSION SCIENCE REPORT – G. GÉGO – MDRS 286

Introduction
The CO2PROT project aims to develop an efficient, sustainable and reliable Bacteriological Life Support System for manned space exploration using purple bacteria.
Purple bacteria are known for their metabolic heterogeneity, which allows for different compounds, like wastes or in situ resources, to be envisaged as substrates.
Among these, carbon dioxide remediation is by far the most attractive option, as it traps waste into potentially edible biomass. With the carbon source defined, multiple electron sources are available, but no comparative data has ever been accumulated to rule out the better option, would it be for space exploration or terrestrial applications.
In this study, three main metabolisms leading to CO2 fixation will be compared by studying the growth of purple bacteria model Rhodospirillum rubrum in:
Photoheterotrophy: High-electron-content volatile fatty acids (Butyrate/Valerate).
Photoautohydrogenotrophy: Hydrogen.
Photoautoelectrotrophy: Electron flux (current).
The bacteria will be grown inside low-cost bag photobioreactors to assess the possibility of mass-production in altered gravity, while reducing costs of terrestrial downfalls of the study. Analog missions are therefore ideal platforms to test if such installations are feasible on other planets. Since photoheterotrophy was already studied in another analog (AATC, Poland), photoautohydrogenotrophy will be tested at MDRS as a follow-up.

Figure 1: Cultivation chamber & electrolyser. Five bag bioreactors were inoculated with purple bacterium Rhodopseudomonas palustris TIE-1. The carbon source used is baking soda, and the electron source is hydrogen produced via electrolysis. The bags are constantly agitated by a rocking platform, which helps solubilize the gas phase within the freshwater media. Green (525nm), Orange (592nm) and infrared (850nm) LED strips are used to supply photons to the anoxygenic photosynthesis pigments.

Methods
In the science dome, the 5 bags inoculated with purple bacteria Rhodopseudomonas palustris TIE-1 are continuing their growth steadily. Turbidity (optical density), measured by spectrophotometry, increased in all photobioreactors, indicating nominal conditions. One sample is taken each 24h for each bag, centrifugated, and the supernatant is separated from the pelleted bacteria, then stored at -20°C. H2 is produced using water electrolysis (300 g of NaOH in 3 L of H2O were used). H2 is supplied ad libitum daily, since the expected consumption of H2 cannot be estimated easily.
Results
Here is a graph showing the evolution of OD (measured at 680nm) for all 5 bioreactors.

Figure 2: OD measurements between SOL 3 and 5. Growth is visible and follows known trends. Similar experiments will then be performed at the University of Mons to check the results that were obtained.

On day 9 of the experiment, the bacteria finally showed a stationary phase, indicating that the growth of the bacteria reached its peak. Final ODs oscillate around 1.2 and 1.4, with bag n°9 showing higher growth than the others. This could be due to better lighting, better agitation, or errors in measuring the OD and contamination.

Table 1: Low-cost bag photobioreactors sampling schedule.

Mid-mission Research Report – November 19th

[category science-report]

UCwNeWiGs1Wa08qzZkECecQEZLiVojNKSnNtyvQ2IoW1Miic09EnTdq_osqrJf3Lhxvlt0RVlcuUxSLJf7RYJfQmy6bohOXn2ua_Ug7kfUkL-jmt4givT8qXwB5R6TgcXokbF6S0O7DNJLiksndu1A

MID-MISSION REPORT

Mars Desert Research Station Crew 286

Sunday November 12 to Saturday November 25, 2023

Report Date: 19-Nov-2023 – Sol: 07

Roger Gilbertson Commander
Donald Jacques Executive Officer, Crew Engineer
Liz Cole Health & Safety Officer, Crew Journalist
Guillaume Gégo Crew Scientist
Scott Beibin Crew Astronomer, Artist In Residence
Hugo Saugier Documentary Filmmaker

INTRODUCTION
The six person crew of MDRS 286 came from individual applicants and invited people. We represent a range of cultures, talents, experiences, backgrounds, and varied interests.

Since our arrival we have received habitat orientation, EVA training, conducted extended training for radio communications, and have performed six EVAs to date.

We have started our broad range of science, technology, and art projects including:

• Bacterial growth experiment helpful for creating closed-loop life support systems
• Planning for an extended range EVA using the MASH (Mobile Analog Space Habitat) vehicle
• Technology demonstrations collecting and studying some in situ resources
• LiDAR scanning of local geological features
• Extensive videography of all aspects of habitat and EVA operations
• Daily media updates
• Daily monitoring of the environmental and life systems aboard the MASH

In general, we have proceeded efficiently and effectively. However rain began on Sol 6, cutting short our EVA #6, and introducing uncertainty for the timing of future planned exterior activities.

VISITING MEDIA
Additionally, we are currently hosting two visiting photographers sent by the New York Times, Andrea Orejarena and Caleb Stein. They arrived the morning of Sol 4, and have remained fully “in sim” with us for their entire stay. They successfully adapted to many challenges of using their professional camera equipment while constrained by space suits while on EVA. They plan to depart tomorrow, the morning of Sol 8.

xlJF6PtW_ZsH-7JDlmRsX-HGAIINF0pOlrcc91UEuugTf8uCGLDYCE9ima-Jh-wIGGIx8Rdfoa7Jktv_jnniPoKcq2F5g1XFM7m-OWeLclvMRQHQM5qCkXWtaUU3DQKFYw0u_D8HZEr3uokjFgnQpg

Visiting photographers Caleb and Andrea on EVA at Marble Ritual.

PROJECT 1: CO2 Fixation by Purple Bacteria for Space Food Production: A Comparison of Three Electron Sources & Terrestrial Applications.

Lead: Guillaume Gégo

Background: Master degree in Biochemistry, Molecular and Cellular Biology at UMONS, BE.

Process: The CO2PROT project aims to develop an efficient, sustainable and reliable Bacteriological Life Support System for manned space exploration using purple bacteria. Purple bacteria are known for their metabolic heterogeneity, which allows for different compounds, like wastes or in situ resources, to be envisaged as substrates.

Among these, carbon dioxide remediation is by far the most attractive option, as it traps waste into potentially edible biomass. With the carbon source defined, multiple electron sources are available, but no comparative data has ever been accumulated to rule out the better option, would it be for space exploration or terrestrial applications.

In this study, three main metabolisms leading to CO2 fixation will be compared by studying the growth of purple bacteria model Rhodospirillum rubrum in:
• Photoheterotrophy: High-electron-content volatile fatty acids (Butyrate/Valerate).
• Photoautohydrogenotrophy: Hydrogen.
• Photoautoelectrotrophy: Electron flux (current).

The bacteria will be grown inside low-cost bag photobioreactors to assess the possibility of mass-production in altered gravity, while reducing costs of terrestrial downfalls of the study. Analog missions are therefore ideal platforms to test if such installations are feasible on other planets. Since photoheterotrophy was already studied in another analog (AATC, Poland), photoautohydrogenotrophy will be tested at MDRS as a follow-up.
SETUP

Left: Cultivation chamber & electrolyser. Five bag bioreactors were inoculated with purple bacterium Rhodopseudomonas palustris TIE-1. The carbon source used is baking soda, and the electron source is hydrogen produced via electrolysis. The bags are constantly agitated by a rocking platform, which helps solubilize the gas phase within the freshwater media. Green (525nm), Orange (592nm) and infrared (850nm) LED strips are used to supply photons to the anoxygenic photosynthesis pigments.
Right: Hydrogen electrolysis system.

METHODS
In the science dome, the five bags inoculated with purple bacteria Rhodopseudomonas palustris TIE-1 are growing well. Turbidity (measurable optical density), measured using spectrophotometry, increased in all photobioreactors, on average from 0.12 to 0.25, an approximate doubling in 12 hours. One sample is taken each 24h for each bag, centrifugated, and the supernatant is separated from the pelleted bacteria, then stored at -20°C. H2 is supplied ad libitum daily, since the expected consumption of H2 cannot be estimated easily.

Another shipment from the University of St. Louis of Rhodospirillum rubrum SH1 inocula arrived on Sol 4. Looking ahead to the week’s progress with the experiment, the plan is for the Rhodospirillum rubrum SH1 to be inoculated in five photobioreactor bags and fed freshly generated hydrogen.
RESULTS

Tables 1 & 2: Sampling schedule and spectrophotometry measurement results (OD).

Figure 2: OD measurements between SOL 3 and 5. Growth is visible and follows known trends. Similar experiments will be performed at the University of Mons to confirm these results.

– # –

PROJECT 2: Performing Extended Extra-Vehicular Activities Using a Mobile Analog Space Habitat

Lead: Donald Jacques

Background: EVA’s at MDRS are constrained by the range of the rovers, time necessary to recharge the batteries, as well as the physical strain on participating crew members, exposed to the elements during travel, much less being able to replenish food, air, water during an extended EVA.

Update: We have defined the logistics of preparing the MASH for the excursion, and are developing the EVA Requests to execute during the second half of our mission. Seating for the EVA team members in the cockpit has been completed. A preparation EVA the day before will be necessary to retract the solar panels, for departure. Then on the day of departure, suits, radios, chargers, and personnel will board. The plan is to traverse to the destination, suit up, execute the first EVA, then return to the MASH for a sack lunch and suit/radio charging time; then execute a second EVA, followed by a return to the hab in the afternoon. This is of course dependent on weather conditions.

-_cCHeBGQlJ22fhLI1ZQhDYucUD2uSby6IeKXluWimLyeeOvHwr48lqURVzslV4OdeFiZg1smgY0KhGSNTBCJAIrfA2cinH68R0jSxm2FwBUcQ1BRighs5jaMSzqo4w857uKmwTRrOicGMZcXx0M_Q

Command section of the Mobile Analog Space Habitat (MASH)

– # –

PROJECT 3: Creating High Resolution Interactive Digital Assets of MDRS and Local Geological Sites Using 3D Scanning techniques.

Lead: Scott Beibin

Background: LiDAR, Photogrammetry, Neural Radiance Fields (NeRFs) and other techniques can be used for accurately creating detailed high resolution digital twins that can be utilized for remote study of objects and landscapes. This can include examining equipment that has undergone stresses (rocket motors, fuel tanks, protective shielding) and looking at geological features. The advantage of having high resolution scans is that there can be coordination of examinations between explorers on Mars as well as remote support teams on Earth and elsewhere. Currently I have been using a variety of LiDAR devices for my own archaeological explorations.

Update: So far on the mission I have had three successful outings where I’ve used LiDAR to scan geological features. To do landscape LiDAR scanning of outdoor locations I’ve been a custom built jib consisting of a two meter long extendable pole fashioned from a modified monopod upon which is mounted are two pulleys. At the end of the far pulley I mount an iPhone 14 which is used for scanning. This enables me to have a greater reach where I am able to capture more details.

So far LiDAR scanning has happened in 3 locations on 3 separate EVAs:

• Sol 1 – EVA 1 Marble Ritual: Reconnaissance done using iPhone 14 for test scans – accompanied by 360 video.

• Sol 2 – EVA 3 – Mailbox Rock: Detailed scanning of a large area containing many interesting and colorful geological features and surface textures in the proximity of Zubrin’s Head.

• Sol 4 – EVA 4 – Clay Gathered on MDRS campus: Clay was gathered and geotagged near the Science Dome from a dry streambed. Samples will be prepared for 3D clay printing on the Mandelbot Ecotech SURFA2 Goostruder.

Various technical problems were identified and solutions will be implemented on future scans, including the use of a drone camera for improved scanning results.

Image 1. Marble Ritual features. Scan by Scott Beibin

Image 2: Mailbox Rock. Scan by Scott Beibin.

Image 3. Scan of stream bed near Science Dome. By Scott Beibin.

Image 4: MDRS 286 Crew Member Scott Beibin LiDAR scanning a stream bed. Photo by Liz Cole.

– # –

PROJECT 4: Producing Functional Artifacts Using Local Clay Resources and a 3D Extrusion Printer

Lead: Scott Beibin

Background: This project proposes collecting local clay and gypsum from the vicinity of MDRS and processing it into 3D printed objects intended for either durability or ecologically minded disposability. I have designed a 3D plotter/printer that will be used for this project (Mandelbot Ecotech SURFA2 Goostruder).

Update: Some equipment was damaged in transit and needed some soldering and structural repairs. All is working fine now. On Sol 4 EVA #4 we gathered and geotagged the locations of clay samples taken from stream beds around MDRS near the Science Dome.

Next I will begin to crumble the samples into a powder and separate the clay from the sand, then suspend the sifted material in water and wait for it to settle. Once settled, I will pour off the water and put the remaining material into a cloth bag. I will squeeze out all of the moisture to reveal the clay. I will experiment with various thicknesses of the clay then insert into 60ml syringes which I will insert into the Goostruder on the Mandelbot Ecotech SURFA2.

Geotagged soil samples

– # –

PROJECT 5: Using Local Gypsum Resources to Produce Molds for Metal Casting

Lead: Roger Gilbertson

Background: Residents of Mars will utilize local resources as much as possible. After fulfilling their original purposes, metal items brought from Earth can be melted and reformed into other useful items. The age-old techniques of mold making and metal casting will find new uses on Mars.

Update: The project originally proposed collecting local gypsum from the vicinity of MDRS, however since previous missions have located, collected and processed gypsum into plaster, in order to conserve EVA and lab time, I decided to use commercially prepared plaster instead of creating it here.

The “original” of the test component was 3D printed in PLA plastic, then pressed into a mold form containing thickening plaster. When dried, the original was removed, and the resulting plaster mold half cleaned and baked in a science dome oven at 250 °F for two hours. Next steps include: preparing the second half of the mold, then filling it with low-melting temperature non-toxic bismuth metal to make a component. If time allows, three identical pieces will be cast and assembled.

Left: Mold form with thickening plaster and PLA original. Right: Dried first mold half.

– # –

PROJECT 6: Mars Academy – A Documentary Film About ESA Scientist Claude Chipaux and the Past, Present and Future of Mars Life Sciences

Lead: Hugo Saugier

Background: When my grandfather Claude died in 2010, I discovered that he was the founder of a research program of the European Space Agency, dedicated to the question of the autonomy of the crews of long journeys in space. I then understood that the popular figure of the high-tech astronaut is gradually changing, being replaced by a new kind of galactic explorers: astronaut-farmers. For a while, I didn’t know what to do with such a heritage, until I recently decided to write a movie about Mars dreamers in which my grandfather would be one of the characters.

Update: I’ve been shooting great images of people in sim, doing their work and during their daily routine. One thing that specifically hit me up is how the group members have really different backgrounds but are complementary. In these conditions, I need to be particularly quick, organized and reactive as things go fast and people are always doing interesting things. Sound is not always easy to handle but recording walkie talkies sound is surprisingly easy and provides good results. My goal for the second part of the stay is to continue to collect as much footage as I need, which is pretty much a challenge regarding the time remaining.

lgSIS_SgBBlwWF_vI5JB1CQnU8sqhDcdfQ8pZP2qOl8vYcmiEVgJsrtKCFLdjFzvJgIOfbXfYxSWYLitPoXU6XI5KgeALVt-4lpU1DUXKriNKx-dNXAiHZeGk3KUTGZws1R0Wyb_wKUknAw16ehXxQ

Hugo filming and recording audio.

STyPwZACiItbFfm2NGc20Ox4X6HtDOBW7nYXBeB-dpd70bbtYMNJpYYZFwuYxLrb9FmXjiI0ha3EHgV6gUMWewftDwIN7isrG8De43gEA_TTlKVpeMcqnWuV4meQnNPQ03CsShLNXbU6CkBdzWnUwg

Sunrise viewed from the RAM.

qYWxaSl9Ci04dxaY3jNLI4qcugs22So2ARjFZi0doViUpuwEClBenglnRXB0ZwhcWYwYzFGqQvg31azs3GSYLrn9Gpm2oD_fizAhTi--eR9K5M5RKn_JOsHaxUVaNCcVaKPfRkfOkN7pfykVQ6Hygg

Guillaume in the Science Dome.

gEDZblkI5TZUDUITnIUW3-r40GRVwEiEHgXr2ihaRcy9lP6lMKOen6DRQ_Etp8JZrgOiNuMmO-YOARZiV-dH06Hf6267K9y-170huBqHmZakGJp2VcWwnAL80CYQ0Xhpfv-M4kcF4zytWzqtfJw3bg

Setting out on an EVA in a two-person electric rover.

FA8VNlCAZAVssBIuBDUpN63cfWBnMywGVf3DRJ7dfV2P8L7pZlQTtLZW73773_mYyAwNeomvrOvKW5qGL5_ETj5-ABZnbCQeRWBuK3m5iDcJ78RwaUbEuhVFBKEoMBxYMhiCrBfF00U_2bhft5Dr2g

Roger, Hugo and Guillaume rest and converse at Marble Ritual.

– # –

PROJECT 7: Simulating Acoustics of Mars for an Outdoor Martian Music Performance

Lead: Scott Beibin

Background: Using recordings from the electret microphone mounted on the Supercam on the Perseverance Rover a ground truth for the modeling of acoustic processes in the environment on Mars was characterized for the first time in the audible range and beyond (20 Hz to 50 kHz). SuperCam’s microphone recorded air pressure fluctuations from 20 Hz to 12.5 kHz or 50 kHz, at sampling rates of 25 kHz or 100 kHz. Recordings of the Ingenuity rotorcraft and laser-induced sparks were used as reference sources of sound.

It was discovered that:
• The acoustic impedance of the martian atmosphere results in approximately 20 dB weaker sounds on Mars than on Earth – if produced by the same source.
• The acoustic attenuation range on Mars was discovered to be roughly between 20Hz to 20kHz.
• Two different speeds of sound were observed on Mars. Low-pitched sounds travel at about 537 mph (240 meters per second), while higher-pitched sounds move at 559 mph (250 meters per second) because of the low-pressure 96 percent CO2-dominated atmosphere (compared to 0.04 percent CO2 on Earth).
• The atmospheric pressure on Mars is about 0.6 kPa (170 times lower than on Earth).

Process: Using the data that was published in Journal Nature [https://www.nature.com/articles/s41586-022-04679-0] and on the Nasa website [https://mars.nasa.gov/mars2020/participate/sounds] I collaborated with audio engineer John Knott to create a filter in a DAW (Digital Audio Workstation) that accurately simulates the way sound travels on Mars.

Update: All music, audio recording, video and other sensor gear has been assembled and tested for the Ptelepathetique musical performance. The reconnaissance EVA on Sol 6 to scout for a suitable location for the Ptelepathetique Martian Music performance located has been delayed due to dangerous conditions created by rain resulting in slippery mud around MDRS.

Because of this we will need to delay the outdoor performance which was to take place tonight (Sol7).

We plan a Ptelepathetique music performance in the science dome tonight demonstrating the simulation of sounds as would be heard in the atmosphere of Mars via the custom software filter that I created with audio engineer John Knott.

If conditions allow, we plan to do an early morning EVA tomorrow (Sol 8) for a “sunrise” music set.

Planning diagrams for the technical setup of all the gear necessary for the performance.

– # –

PROJECT 8: Documenting the MDRS Mission 286 Adventure in Words and Images

Lead: Liz Cole

Background: Life in the constraints of the Martian environment requires a shift to more sustainable life support systems such as vegan and plant based food production and building with local resources. Crew 286 of MDRS is developing various technologies to support life on Mars while addressing Earth’s most pressing environmental problems. Documenting the crew conducting their research, EVAs and life throughout the course of the mission will highlight the work of researchers at MDRS.

Update: So far I have produced posts for each Sol, giving a narrative of what happened on each Sol, documenting the progress of the crew’s experiments and projects thus far into the mission, and documenting the crew’s experiences conducting EVAs, learning comms protocols, developing resource conservation protocols inside the simulation, and other activities inside the simulation.

I have recorded interviews with Crew Scientist Guillaume Gégo who explained the progress of his experiment exploring CO2 fixation by purple bacteria for space food production, and recorded interviews with Crew Artist Scott Beibin on his progress creating high resolution interactive digital assets of the MDRS habitat and facilities and local geological sites using 3D scanning techniques, and simulating the acoustics of Mars for an outdoor Martian music performance. Many crew meetings, including the practice drills of EVA communications, have also been recorded.

UPCOMING

Looking ahead to the second half of the mission, I plan interviews with Crew Commander Roger Gilbertson, Crew Executive Officer and Engineer Donald Jacques and Crew Documentary Filmmaker Hugo Saugier. Follow up interviews with Guillaume and Scott on the progress of their experiments and projects will be done in the second half of the mission.

MEDIA AND OUTREACH

Interview with Mars Society Belgium, where they will host Crew Scientist Guillaume Gégo, for a live conversation on the Mars Society Belgium Facebook page on Thursday November 23rd at 9am MST.

Interview with Journal des Enfants (https://www.jde.fr/) and Crew Scientist Guillaume Gégo on Monday November 20th at 9am MST. This is a publication for kids aged 8 to 12, so this interview seeks to inspire young people to dream of becoming astronauts and scientists.

– # –

PROJECT 9: Evaluating Performance of Biological Life Support Components Installed within the Mobile Analog Space Habitat

Lead: Donald Jacques

Background: A Biological Regenerative Life Support System needs to provide not only environmental support for a team, but a variety of food, water processing, and waste processing. The Mobile Analog Space Habitat is equipped with a min-farm containing many species that interact in order to process a circular economy of nutrients, water, wastes, and air.

Update: Upon arrival and docking at MDRS, the MASH mini-farm was equipped with two (2) operating PhotoBioreactor with spirulina culture medium; a fish pond containing a population of approximately 55 blue nile tilapia, twelve (12) quail residing above a marsh area, 100 meal worms, 100 red wiggler worms, and a garden partially planted with food crops. This experiment represents the first time the MASH has integrated all these species in a semi-closed environment.

During the first few days of the mission each population continued to thrive, while a third PhotoBioreactor was being prepared for inoculation, additional crop seedlings were transferred from the seed trays into the media bed, and kitchen wastes were introduced to the worm bins. A noticeable odor began to appear at Sol 3, as well as increased turbidity in the fish pond. Closer evaluation revealed that the both the quail and tilapia populations were too large, and generating greater guano than anticipated for the system to absorb. A cascade failure, increasing ammonia far beyond the ability for the media bed to remediate, precipitated the loss of a total of 65 tilapia. At Mid-Mission, the quail continue to thrive, as are the crops, the worms, and the spirulina. Additionally, at Sol 4, the amount of kitchen wastes from the hab exceeded the capacity of the system to absorb.

Future remediation will begin with 1) 50% reductions in both tilapia and quail populations, 2) Increase in both worm populations by at least 200%, 3) addition of the population of Black Soldier Fly Larvae to the toilet as additional composters, 4) the addition of a two chamber sump between the marsh and the garden to facilitate transitioning the guano to the compost bins, 5) additional water volume in the sumps to increase bacterial load for ammonia processing.

YY4ShsA62xUfm_10WxaRDeNL83YTlgpZsO2h8yxnVVwyQAQaNfV402Rj43BqdOdwU9ZlPX2JXHbee4Q77ieNcjJFYEYEtJhwkgN09fWY9ZoCfGu1X5nDnyRxPD7c_4bxSKQgRdWZNExvsG9Ro3zitw

Three PhotoBioreactor tubes aboard the MASH.

rE28kEf4qdOwXd_f0DBdOOifsSHgsdjhhwDuWQrz7vs_sPW1xXK8_IR5FT0NzTOSP-eH181Zcu62pILimG_QEu1_7v9qK13Ac7aHk5IdIk0d4ft1yL2p1TX_VkjhIZB4efjPRqwHIEZ0wMc4qoYsVw

Enclosures for tilapia (lower left), mealworms, (middle left), and quail (upper right).

9zveEijb9RFjqqvoLombFMw8oNseX2hceS9MM12L9YT2rh2YMBCqZYwTNNhb4sUGsiFqfju7fRePEXjcSBman-9smVXWJ4DDCcSlepUUpt4uw-kjEfVoIrzqpAglN1cGf9NhLOzF4qZvyAQSVuSUcg

Planting beds aboard the MASH.

– # –

CONCLUSION

We look forward to continuing and completing our projects in the remaining sols we have at MDRS.

# # #

Copyright © The Mars Society. All rights reserved. | Main Site