MARS DESERT RESEARCH STATION

Science Report – March 22nd

Crew 176 Science Report 22 March 2017

Natalia Zalewska
Science Report
22 March 2017 – Sol 11

Dear Mission Support,

We went to the East to see the Jurassic formations in White Rock Canyon
with petrified sandbanks and dunes (Fig.1). I noted characteristic cross-
beddings. Similar beddings are noticable in Gale crater provided  by the
Curiosity rover (Fig2). For milions years on Mars and on Earth layers of
small rock pieces have been deposited in a similar way and now they have
been exposited by erosion.

Regards,

Natalia Zalewska
Commander and Crew geologist, MDRS Crew 176

Curiosity Gale
White Canyon

Science Report – March 20th

Dear Mission Support,

Yesterday we went to the West towards the rocks of the Middle Ages Cretaceous. I noticed that the large sandstone and mudstone walls of Ferron Sandstone Member were characterised by high erosion. Also, huge
boulders lay on the road. I assume they earlier broke off and rolled down as a result of erosion. The landscape resembled the images provided by the HiRISE camera of the Mars Reconnaissance Orbiter from the Candor Chasma area. The images in question showed that the layers in the Chasma Canyon are not completely horizontal and are not homogeneous (Fig.1), (http://www.uahirise.org/nl/ESP_017174_1730). In case of the Cretaceous Ferron Sandstone, it consists of a series of deltaic systems stacked one above another and not a single prograded delta (T. A. Ryer, 1981), (Fig.2). Therefore, one of the possibilities is that the layers of the
Chandor Chasma may be deposited by flowing rivers, through the Valles Marineris canyon.

Cretaceous Sandstone

 

Candor Chasma


Regards,

Natalia Zalewska
Commander and Crew geologist, MDRS Crew 176

Science Report – March 19th

Stereoscopy

After few days of tests and calibration, finally I have configured stereoscopy system on Gaja rover.

The idea of stereoscopy is based on how human sight works. Given two shifted pictures, human mind creates an illusion of depth and 3D.
 This solution is implemented in our system.

First part of it consist of 2 cameras placed about 7 cm from each other, on a moving mounting on a rover. This distance is approximately the same as between human eyeballs. The second one are special Virtual Reality Goggles with LCD screen displaying the video. Video for each eye comes from different camera so they are shifted a bit.

Our tests proved that wearing goggles you can feel like observing the world from robot’s point of view. The depth of image is not as visible as natural sight, but someone can clearly tell if some object is closer of further than another.

This system can be useful in many fields. For example, when you operate a robot, you can now better recognize the surroundings  and plan every move, if you know where exactly in space  everything is placed.

Science Report – March 18th (Engineering)

Name of person filing report: Michał Kazaniecki

Water level detector

 

One of the systems, that you have to check in the Hab all the time is water tank at loft. It is a reservoir of all water flowing to taps, shower and toilet. Everyone need to control the level of water and refill from external tank before it reaches the limit.

Although the tank is partially transparent, in bad lighting it is hard to tell if it is full.

Today, when I saw that the level is below the limit, I decided to solve that problem by creating an electronic water level detector.

The detector consist of two metal electrodes sunk inside the tank and connected to an electronic board (Arduino). When the electrodes are covered with water, electric current flows between them and the voltage is measured by Arduino. If the water is below the limit, the current doesn’t flow through the wires. It is a signal to refill the tank and it is displayed by flashing LED. Everything is powered by one 9-volt battery.

Tests performed on a water in a mug confirmed that the system works properly. We installed it in a tank and we are waiting for the further results of the tests.

Soldring

 

Water Detector

Science Report – March 18th

Yesterday we went to the Murphy’s Canyon. I noticed interesting crystallization of gypsum in the form of ridges sticking from the
surface.

The images taken by different Martian rovers (e.g. Curiosity) show that such crystallization occurs on Mars, which proves the activity of water. In a different place there I also noticed pits caused by characteristic dissolution of sandstone by aqueous solutions.

Such dissolution is a good comparison of chemical weathering by which we can recognize the existence of sandstones and identify them on Mars.

Best regards,

Natalia Zalewska
Commander, MDRS Crew 176
and Crew Geologist

Science Report – March 15th

Crew 176 Science Report 15 March 2017

Natalia Zalewska
Science Report
15 March 2017 – Sol 4

Dear Mission Support,

I am in the hab. ! I continue study of the geology map. I have done rock
separation from Cretaceous Dacota Formation and Jurassic Morrison
Formation.  Base on my study I concluded that fluvial sandstone originate
from Morrison Formation and concretions in the light sandstone from
Dacota.

Best regards,

Natalia Zalewska
Commander, MDRS Crew 176
and Crew Geologist

Science Report – March 14th

EVA #1 approaching to conglomerate Dacota Formation, 1,5 km from habitat
and the study of geology map to identify place of collected samples. These
Cretaceous Dacota Sandstone and Conglomerates originated due to very
strong flow of water. This formation is comparable with images from
Curiosity rover from surface of Martian Gale Crater.  The rock consists
with 1-2 cm pebbles.

Dacota Conglomerate EVA

 

Conglomerate Dacota

 

With kind regards,

Natalia Zalewska
Commander, MDRS Crew 176

Science Report – March 13th

Hi! I send my Science Geological Report

Preliminary observation, using ATV, of mesas weathering processes along
the way to the canion. Since my last stay 12 years ago, strong erosion is
noticeable. Erosion is caused by fluvial processes.
In addition, preliminary observations of sandstone J \ K layers were made.
Observation regarded their cementation by iron oxide.

Regards
Natalia
Crew Commander

(Fig 1) Concretions
cemented by iron oxides are visible on the left side of the picture.

 

Science Report – March 2nd

Science Report

Sol 18

Experiment: Optinvent AR Glasses
Person filling in the Report: Louis Maller

Today the glasses were taken on a non-verbal EVA, worn by Arthur Lillo. They were connected to my computer in the Hab by LAN, so I could access to the glasses camera, and the files inside the glasses.

Today’s EVA was to be done without any radio comm from and between the EVA buddies (they could only receive instructions from the Hab). So the glasses were quite useful as they allowed to monitor their activities, see what they were doing.

A screenshot of the image was used to get to know the level of water inside the tank.

Head movement detection was used to record a certain amount of information using the voice record function. I was able to access the files from inside the hab as soon as they had been recorded (or as soon as the glasses were back in range), so that way we had information of the level of the two trailer tanks, gasoline tank, propane, and state of Deimos with only a slight lag.

When the crew went to check propane, the signal was lost. When they came back, we instructed the glasses’ bearer to nod in order to relaunch AirDroid. It worked, so I regained signal and was able to access to the data that had been stored.

From inside the hab it was quite a success.

I could see on the camera that Arthur was frequently using his glove in front of his face, in order to better see the screen of the glasses, so the visibility of the notifications is still an issue. Arthur told me that indeed it would have been nice to have a continuous signal on the screen indicating that the recording is ongoing.
There are a few instances when the recording ran to its maximum time (5:17).

The movements necessary to launch these actions are also new to him, so sometimes I think he moved maybe with too much or too little amplitude, and of course being in the helmet and wearing the backpack make some of these movements difficult. His feedback is that the movements should be easier to do inside the helmet. The difficulty with that is that the movement should not be so easy to do that they would be done accidently all the time. I think also what lacked is training to properly do the movements in an efficient way.

The glasses are connected to a portable battery charger, so they should not run out of charge at all during the EVA, nor display the battery alert prompter at any time.

They came back near to the hab at around 1000 and I could regain connection with the glasses, see through the camera and download files.
The quality of the recording is all right, even though the reverberation in the helmet can make it hard to understand, and it is worse when there is wind.

Experiment: Seismometer
Person filling in the report: Mouadh Bouayad
The seismometer has been recovered today from its place, and the hole it was in filled in. The data was recovered with it and analyzed in the days to come.

Experiment: Solar Balloon
Person filling in the report: Simon Bouriat
The EVA today recovered the balloon’s anchor, and the part of the platform to which it was attached. We can therefore conclude that it detached from the rest of the platform, as the balloon drifted away.

Science Report – March 1st

Science Report
01Mar2017

Experiment: Optinvent AR Glasses
Person filling in the report: Louis Maller

Today the Optinvent AR Glasses were tested during the EVA by myself, with Victoria monitoring the computer from the Hab.
The recording function worked appropriately, I was able to start and stop recording with movements of my head. I had changed the “stop recording function” to a smaller gesture – tilting the head to the right. It is much more convenient and worked quite well. I think I will change the other functions in a similar way.
One for the functions was relaunching AirDroid by looking up. It is quite difficult to look up enough for the function to be triggered, so it will be nice to do it.
Victoria was monitoring the image from the glasses’ camera on the computer, connected to the glasses through a LAN created by my phone. We did some range tests. In conclusion the range (which is the range of the wifi signal) is between 10 and 20 meters. Once the connection is lost, you need to come quite close to the Hab (less than 10 meters), relaunch AirDroid (using the looking up trigger), and the Hab is able to reconnect to the glasses’ camera.
The recording quality is acceptable, the readings that I have recorded are intelligible.
Now I will start thinking of other ways of using the glasses with head movement. The problem is finding movements that are both feasible and won’t trigger functions by accident. It would be nice to be able to slideshow procedures with the glasses, but the succession of necessary movements might be complicated to implement.

Experiment: Balloon
Person filling in the report: Simon Bouriat

Today the balloon was deployed during the EVA. It took quite a while to do all the knots with the gloves, but it was necessary to be sure the balloon would be strongly tethered to the ground. It eventuelly inflated and rose. It was set up at the usual spot, in the plain north of the Hab. The wind, even if it was quite low, still was a problem for the balloon.
We left it fly during the rest of the EVA, and got the GoPro back from it before coming back to the Hab: it had teken some pretty good shots!
We could watch the balloon from the Hab. But early in the afternoon, it wasn’t in sight anymore. We suspect that either it managed somehow to untether (strings sawed off by rocks?) and blew away, or it ripped apart and crashed somewhere out of sight. we will investigate the site during tomorrow’s EVA to determine cause of death.