Mission Plan – October 29th

Mission Plan

Commander David Mateus
Executive Officer and Astronomer Luis Diaz
Health and Safety Officer Andrea De La Torre
Crew Engineer Tomas Burroni
Green Hab Officer Andres Reina
Crew Journalist Marina Busqueras

A diverse Hispanic crew, hailing from various countries across Latin America including Spain, embarks on a mission to the Mars Desert Research Station (MDRS), a terrestrial analogue for Mars exploration. This mission is of paramount importance, as it not only underscores the universality of space exploration but also represents a significant step towards equitable participation in human spaceflight. By involving the Hispanic community in such missions, we foster inclusivity and expand the talent pool, drawing on the unique perspectives and expertise that diverse individuals bring to the table. Furthermore, it serves as an inspiration to underrepresented groups, encouraging their engagement in STEM fields and space exploration, ultimately enhancing innovation and the long-term sustainability of our journey to the stars.
Below, we present the projects that the crew members will be working on:
Project 1:
The continuity of the power generation system in a Martian station is of critical importance for crew survival. This means that all single point failure parts within this system must go through preventive maintenance. This strategy seeks to detect and isolate possible faults before they cause unrecoverable failures. One key component in MDRS is the diesel power generator, which as most combustion engines, is subject to constant vibration loads that degrade the parts over its lifetime. These vibrations can be measured via a set of sensors, namely accelerometers and ultrasonic microphones, and their data used to construct a characteristic signature. By monitoring this signature over time we hope to be able to generate early alerts for the crew to realize that maintenance is needed and avoid power outages.
Project 2:
During the early years of Martian settlements there will likely not be a global navigation system available as the ones we have on Earth. Therefore, reliable methods of geolocation must be developed and kept as backups to ensure that crewmembers can always return safely to base. We can assume that the areas surrounding the base will be photographed and mapped by satellites before settlement. We propose a solution to the case where a crew is lost far enough from the station such that a drone’s range/autonomy is not sufficient to find the way back. This proposal consists of using the drone to capture an image from above of where the crew is located, and then matching the picture to the satellite image database to pinpoint the location and relative orientation towards the station.
Project 3:
The research project carried out at the Mars Desert Research Station (MDRS) of October 29 to November 11, by Crew 285, focuses on development and implementation of a safety and rescue protocol during research outings extravehicular (EVA) under simulated Mars conditions.
The main objective of this project is to guarantee the safety of the crew members, establishing clear and effective procedures for cases of loss of communication between the members who are abroad and those at the base.
A drone will be used for search and rescue, along with specific signs of communication (indications), ensuring that all crew members are properly trained and prepared to face emergency situations in an environment analogous to Mars.
It is important to use clear and easy to understand visual and auditory methods.
Sequence of Movements for each signal:
Rescue Request Signal:
The crew member in distress activates a rescue request signal, a flash of light or a specific sound signal.
– Sequence: The drone makes a circular or elliptical pattern in the air to indicate that it has received the rescue request signal.
– Meaning: This circular or elliptical pattern would indicate to the crew member in distress that the drone has received the request and is preparing for the rescue.
Position Signal:
The drone marks the GPS coordinates of the base or the crew member in distress to know her exact location. On the drone operator screen.
– Sequence: The drone performs an up and down movement pattern 3 times.
– Meaning: This would indicate to the crew member her exact location and facilitates his identification on the ground.
Direction Sign:
The drone uses patterns to indicate the direction in which the distressed crew member should move to be safely picked up.
– Sequence: The drone makes a starting movement, zigagagar and in a straight line towards the direction in which the crew member in distress must move to be picked up.
– Meaning: These movements would clearly indicate to the crew member the direction in which he should move to meet the drone and be rescued safely.
Project 4:
A drone project for prior observation and research (image collection) of a Martian area, and to prevent incidents in the EVA (Extravehicular Activity) of the Crew 285.
Project to ensure the safety and success of the EVAs by providing valuable information about the exploration area (images and videos).
The objectives of observation and investigation, such as identifying places of interest, evaluating security and ground conditions, or search for key resources.
To observe ground conditions, or search for key resources: we must use satellite images to collect data from Martian areas and then collect precise coordinates for drone use.
By combining satellite information with data collected by the drone, we will obtain a more complete and detailed view of the region of interest.
Capturing these images could reveal crucial information about the presence of water, organic compounds or other essential elements.
Project 5
For several years, experiences and results from various Mars analog missions conducted have been documented through various written records such as summaries and journalistic reports. This current study aims to undertake an exercise that enables the creation of categories for the qualitative analysis of sociocultural dynamics within these settings, with the goal of establishing recommendations for future space travel processes. In this regard, the proposed interpretive categories are intended to serve as a methodological tool for identifying, based on patterns and unique aspects within the texts, variations in the social dynamics of the crew. This, in turn, allows for the discovery of factors that may either enhance or hinder social behaviors that can positively or negatively impact the success of a space mission.
Simultaneously, the study seeks to develop a data extraction methodology for the sociological and anthropological analysis of experiences in analog simulations. By consolidating these social analysis categories, the methodology can be applied in similar real-world space environments to gather relevant information regarding human interpersonal aspects in outer space.
Project 6
Scientific Background
The colonization of Mars implies to a great extent the use of Martian resources. The great cost of sending a kilogram of payload to the red planet makes us see the great utility of using Martian soil to produce materials that can be useful for various activities. In particular, I consider the construction and obtaining of fuels and other products. At the 2016 IAC held in Guadalajara, Elon Musk announced his interplanetary transport system, in which he proposed the idea of obtaining fuel directly from the Martian environment and thus recovering enough to return to Earth. This technology, in diapers still, implies not only chemical processes that must be carried out in situ, but also the use and design of technology and tools that astronauts will have to manipulate.
The challenge
The challenge is to find the raw materials in the Martian environment, verify that the product obtained is the desired one and produce it in the required quantities.
Also, it is necessary to achieve the optimal design for the tools that will be used by astronauts for these purposes.
Proposed Solution
The initial phase of the project involves creating an observational characterization of various types of soils to identify their solid properties relevant to construction material production. Once this data is collected, it will undergo analysis, and subsequently, the production tools will be put into operation.
Project 7
PROPOSAL FOR SCIENTIFIC RESEARCH ACTIVITIES
Luis Diaz (Peru) – Astronomer & Executive Officer – Crew 285
Mars Desert Research Station, Utah, USA
SCIENTIFIC BACKGROUND:
Traditionally, false color techniques in deep space photography have relied on expensive specialized filters to capture the wavelengths of hydrogen-alpha, oxygen-III, and sulfur-II. These three elements are notably abundant, especially in nebulae, in space, making them crucial for monochromatic camera-based imaging. However, alternative methods have emerged for achieving similar results with single-shot color cameras, using narrowband dual-channel filters to extract hydrogen-alpha and oxygen-III signals.
THE CHALLENGE:
The challenge is to develop a false colorization method that can replicate the results achieved with expensive narrowband filters using a monochromatic camera, but this time exclusively utilizing standard LRGB filters. Unlike the traditional approach, this method does not involve the use of filters designed to restrict light pollution. Consequently, it is only applicable in areas with low Bortle scale ratings or requires extensive post-processing to mitigate light pollution contamination.
PROPOSED SOLUTION:
The proposed solution involves the exploration of mathematical operations applied to each color channel in an attempt to mimic the results traditionally obtained with specialized filters. The primary goal is to replicate iconic palettes like the Hubble palette using only LRGB filters with a monochromatic
camera. The process will involve careful mathematical adjustments to each color channel to create a false color image that captures the essence of the hydrogen-alpha, oxygen-III, and sulfur-II signals without the need for narrowband filters. Special attention will be given to the processing techniques required to mitigate light pollution when working in areas with higher levels of light contamination. This approach aims to provide an economical and accessible way for astrophotographers to create stunning deep space images without the need for costly specialized filters.
The following targets have been simulated in Stellarium with the MDRS location and nighttime date and time ranges during my rotation to confirm that there will be a wide window of time to capture them; Likewise, it has been validated that the size of each objective can fit perfectly into the focal ratio of the telescope and the size of the camera sensor:
Main objectives to test the method:
– Veil Nebula
– Orion Nebula
– Heart Nebula
– Horsehead Nebula.
– Rosette Nebula
Additional Objectives:
– Helix Nebula
– Crescent nebula.
– Pleiades
Targets to be processed with normal LRGB signal:
– Andromeda
– Star clusters
– Others

INSTITUTIONAL AFFILIATION:
Astronomical Association of Trujillo (ATA)
Astronomy Club of the National University of Trujillo

Mission Plan – October 15th

Crew 283 – New Horizons II

Mission Plan and Aims

10/16/2023-10/20/2023

Crew 283 (New Horizons II) consists of seven undergraduate and high school level students, along with a highly experienced commander. Our aim is to gain research experience and improve our skills at maintaining a Martian simulation. This is our second mission, the first was focused on how to perform a successful sim, this second one being mostly research based.

  • Sergii Iakymov – Commander

  • Owen Flanagan – Executive Officer

  • Charis Adams – Health and Safety Officer

  • Ian Davis – Engineer

  • Micah Callaham – Operations Officer

  • Riley Nuttycombe – Spacesuit Officer

  • Hope Lea – Communications Officer

  • Barnabas Pasztor – GreenHab Officer

Each student has prepared a research project on a topic of their interest to work on in this environment throughout the mission. Topics range from mental health to meteorology, with a lot in between. As students, we hope to learn and improve from our experience during this sim, and adapt to what we have to work with. The projects are as follows

Owen Flanagan:

Unspecified project pertaining to the mental health of the crew.

Charis Adams:

Health science project with the goal of monitoring the crew’s health, vitals, and performance. Specific goals include looking at respiratory and circulatory health throughout sim, and examining the effects of a Martian environment on overall human health.

Ian Davis:

Drone project involving scouting out locations for EVAs and searching for desert varnish and desert pavement from the sky. Tied to project with Callaham.

Micah Callaham:

Desert varnish and desert pavement identification and research, linked to Davis’s project. Logging locations that are prevalent in each of those two items.

Riley Nuttycombe:

Space suit prototype project. Testing and improving helmet design for space suits, comparing original suit helmets to new prototypes, and specifically improving the ventilation system in the suit helmets.

Hope Lea:

Radio Mesh Network optimization project. Measuring the solar intake, battery charge, and distance capacity between beacons for future weather stations.

Barnabas Pasztor:

Maintaining GreenHab and restoring the soil and systems in order to plant this year’s crop.

We will be documenting our mission over video, so as to best demonstrate the extent of our research. Our communications officer will compile videos of our work that will be displayed at the end of the mission.

We plan to conduct at least one EVA a day, with a second being optional. Primary EVAs will take place in the morning, secondary in the afternoon. No more than two EVAs per day unless an emergency warrants it. These EVAs are for research purposes only, and are aligned with one or more crew member’s projects.

In conclusion of our mission, we hope to have gained valuable research experience and a better understanding of how a Mars mission should function.

Mission Plan – June 4th

Mission Plan, Crew 282 – Martian Biology III – June 4-10, 2023

Crew 282, Martian Biology III is a non-simulation biological survey of the Mars Desert Research Station sponsored by the Mars Society. Composed of scientists, historians, educators, and Mars Society personnel, the goal of this mission is to continue an ongoing investigation into the flora, fauna, and biota of the operational area surrounding this unique analog site. In 2019, Crew 210, Martian Biology I, the first expedition of this program, documented 40 vascular plant taxa for the station, building off collecting activity carried out during previous missions. Simultaneously, Crew 243, Mars Biology II, continued collecting vascular plants, finding 33 taxa newly reported for the MDRS operational area, and documented five lizard species, numerous mammals and birds, multiple insect taxa including ants and mosquitoes, advanced research on the history of Astrobiology, and provided online and in person educational opportunities to Canadian students. Martian Biology III seeks to continue documenting the biology of the station’s area and to continue our historical research.

Crew 282 will continue our documentation of vascular plants and lichens in the broader MDRS operational area – revisiting species rich habitats such as Salt Wash, Muddy Creek, and the Fremont River – and additionally carrying out a full day of botanizing in the Henry Mountains. These projects will be carried out by Paul Sokoloff, Jacopo Razzauti, Jordan Bimm, and Sergii Iakymov.

We will also continue documenting the mosquito and ant biodiversity of the station operational area at each of these sites as well, which will be led by Jacopo Razzauti. Jacopo will also be testing a new mosquito trap design.

During our biological investigations, Dr. Jordan Bimm will be conducting field research in support of his historical research project “Astrobiology in Action”. Through conversations and interviews with the MDRS assistant director and the crew, he hopes to further understand the long history and current practice of Astrobiology and the work of the Mars Society.

Post-mission, we plan to use the observation data and voucher specimen collections we collected on both Martian Biology II and Martian Biology III in peer-reviewed scientific papers, conference presentations, and a broad range of scholarly work, while the science communication pieces produced will share the story of MDRS and it’s unique biota for a long time to come.

Mission Fieldwork Itinerary

June 5, 2023 Fieldwork at Salt Wash (12N 504648, 4260207) [38.4902°, -110.9467°]

June 6, 2023 Fieldwork at McMillan Springs, Henry Mountains (12N 513393, 4213848) [38.0723°, -110.8473°]

June 7, 2023 Fieldwork at Fremont River (12N 518311, 4257841 [38.4687°, -110.7901°]

June 8, 2023 Fieldwork at Muddy Creek (12N 520729, 4246929) [38.3703°, -110.7627°]

June 9, 2023 Fieldwork at Salt Wash (12N 504648, 4260207) [38.4902°, -110.9467°]

Crew biographies, photos and mission patch – May 14th

Crew 281 Crew biographies, photos and mission patch 14May2023
Crew Bios
Ritu
Ritupriya Patil, Executive Officer

Ritu is the Software Verification Operations Lead for Flight Controls at Joby Aviation in Santa Cruz, California. She has been testing the flight control systems for fixed wing, rotorcraft, and eVTOL aircrafts and has eight years of expertise in the aerospace industry. Ritu absolutely loves flight testing the electric air taxi she is currently working on. She is also involved in executing Control Law and Navigation Sensor tests using a range of software, processor in the loop, and hardware in the loop simulators representative of the eVTOL system. Ritu graduated with a master’s in aerospace engineering from UT Arlington, where she specialized in flight dynamics and controls. Outside of work, Ritu is an avid space enthusiast, and has completed multiple courses offered by the International Institute for Astronautical Sciences namely, Citizen Research Methods, Flight Test Engineering, Fundamentals of Astrodynamics, System Engineering for Human Space Flight. She has also collaborated on teaching Orbital Mechanics and Mission Simulation. Ritu is working on her private pilot’s license, and is an advanced open water diver. She is always working towards her dream to become an astronaut and set foot on Mars!

Ana
Ana Pires is a Researcher at INESC TEC’s Centre for Robotics and Autonomous Systems. She has a European Doctorate in Geosciences (Geological Resources and Geomaterials field), a MSc in Georesources and Geotechnics, and her background is Geotechnical and Geoenvironmental Engineering. She is involved in several sustainable sea/marine mining projects, geotechnologies, geoengineering, and georesources. Her research is focused on Space-Earth-Sea interaction, Space Resources, Space Mining, geotechnics, geophysics, and the development of geo-technologies or geo-robotics for Space exploration. She was also the first Portuguese woman to finish with success the Scientist-Astronaut Program, under the framework of Project PoSSUM (Polar Suborbital Science in the Upper Mesosphere) and the International Institute for Astronautical Sciences (IIAS), supported by the NASA’s Flight Opportunities. Ana Pires is a Specialist Diver (SSI Certification), and she is passionate about exploring extreme environments. Since 2018 she has made efforts to promote human space flight, astrogeology, technology, robotics, and STEAM outreach activities in Portugal. Currently, she is the Co-Chair of Knowledge Management of “Space For All Nations|SFAN”, an initiative developed under the scope of the IIAS. In January of 2023, she was nominated for the ACTIVA Awards “Inspiring Women” in the Science Category, by the ACTIVA MAGAZINE in Portugal.

KC
KC Shasteen is an engineer and researcher who recently graduated from the University of Arizona. He has a Bachelor’s degree in Physics and Mathematics from Midwestern State University and a Master’s degree in Biosystems Engineering from the University of Arizona. His thesis work involved using a physiological model to predict plant growth in vertical farms, using machine vision to monitor growth, and growing crops to calibrate and verify the model. He also has publications and continues to research ways to optimize growing facility designs for improving yields by adjusting factors such as planting density and HVAC control decisions. His long-term goals are to apply his engineering skills to design, develop, and create closed-atmosphere growing systems for use in food production and bioregenerative life support systems for off-world bases and, with luck, to personally help deploy and operate such systems on Mars or elsewhere in the solar system.

Megan
Megan Kane is a space professional with the goal of going to Mars. With a decade in the space industry Megan is now pursuing her PhD in Biosystems Engineering at the University of Arizona. After completing her Masters of Science at the International Space University Megan continued to pursue opportunities including a rehab mission at MDRS, NASA’a HERA mission and the International Institute for Astronautical Sciences’s Citizen Science projects. Today she runs the Lunar Mars Greenhouse at the University of Arizona researching Bioregenerative Life Support.

Rachel
Rachel “RC” Jones

Amateur Radio Operator. With a passion for space communication, RC is striving to increase community interest in amateur radio. RC is working to support STEM education in the field of radio science. She is working with Amateur Radio on the International Space Station (ARISS) to develop new STEAM materials.

Space Enthusiast. RC joined Project PoSSUM in class 1901; she has participated in EDU 101 and AER 101. Following her dream, she earned her private pilot’s license and achieved Padi’s Master Scuba Diver’s training to understand the unique challenges and needs of spacesuits.

Interdisciplinary. RC is building upon a strong background in space science and cybersecurity. Her current endeavors are founded on an extensive academic background with a BA in Political Science from LaGrange College, a BS in Computer Networks and Cybersecurity from the University of Maryland Global Campus, an MSc in Space Management from the International Space University in Strasbourg, France, and a MA in Intelligence with a cyber focus from the American Military University. Currently, RC is pursuing a PhD in Aerospace Sciences from the University of North Dakota.

Mission Plan – May 14th

Crew 281 Mission Plan
Date: 05/14/2023
Overall Plan
The mission will be completed with 5 crew members. There are several research objectives for the mission described in the Research Projects section of this report. The mission plan is based around a 2 week mission to the red planet where the crew will conduct research, trial equipment, develop procedures, and provide a learning experience for the crew members.

● Megan Kane: Commander and Greenhab Officer
● Ritupriya Patil: Executive Officer and Crew Scientist
● Rachel Jones: Health Safety Officer
● Ana Pires: Crew Scientist
● KC Shasteen: Crew Engineer

The plan calls for 2-3 people to do EVA’s every day with the remaining crew members staying inside the hab. The plan is for the EVAs to occur primarily in the mornings. This will permit time to review any materials and prepare end of day EVA reports. Each EVA will include a 15 minute prebreath for safety of the crew.

The normal operations of the hab will be maintained as directed by the MDRS Handbook and Mission Support. Days will be split between operations, research, shared crew activities, and individual crew time. While each crew member has their research and operations focus, the activities will be supported by the entire crew. The crew engineer will be assisting with all of the technical aspects of the mission operations and research.
Research Projects
Greenhab – Megan
Two items of research related to the greenhab will be conducted:
propagation of Cacao (Chocolate) and
passive watering techniques to reduce labor and water consumption.

For propagation of Cacao three varieties of Cacao fruit will be used to propagate from seed. The research will be conducted in the Science Dome as the growth chamber needed for the early stage propagation is located there.

The passive watering system will be installed in the Greenhab. The process will involve selecting up to 10 planters in the greenhab to water using terracotta watering spikes. The consumption of water and labor time will be tracked for the control planters (using watering jug) and the test planters (using terracotta spikes).
Science – Ana
The research presented herein is related to geo-technologies and geomaterials characterization, for future construction and engineering on Mars. The main goals are to:

determine a traverse planning of the area;
carry out a geological and geomechanical characterization;
measure the rock and minerals hardness with 2 type of equipment Schmidt Hammer and Equotip (non-destructive testing equipment);
determine scanlines to carry out a geological assessment with a specific datasheet to register all the data;
collecting rocks and soils samples for future laboratory tests;
test a rock sampling device (scoop prototype) in a real environment and register all the adjustments/improvements for the future application in the field of ISRU.

Another part of the research is concerned with the long-term human presence on Mars and extreme environments. Therefore, it is important to test and wear clothes that can be appropriated to these type of missions. Ana Pires has been collaborating with researchers involved in the field of engineering materials, so the Crew will try a prototype of smart textiles (t-shirts and boxers) for extreme environments. The Crew will provide feedback about the use of these textiles during the mission for future improvements.
Science – Ritu
The research involves investigation of drone technology for efficient and safe extravehicular activities in Mars habitat exploration. There is an ongoing effort for space agencies worldwide, and the safety of astronauts remains a top priority during EVAs. This proposal aims to investigate the use of drone technology to
assist analogue astronauts in Mars habitat exploration, with route planning,
emergency medical assistance, and
video documentation of the EVA activity.
Other Projects
Ham Radio – Rachel
Communicate with Dayton Ham Radio Convention – Call in to the booth to connect to the ISS.
Interacting with the ARISS booth at the ham radio convention
Connect to 1 or more additional analogs: University of North Dakota, HISeas and/or SAM at the Biosphere. Connection will be either via HAM radio or zoom. These will be part of the simulation contacting other Mars bases.
STEM Education Videos – Rachel & Ana
With the assistance of the crew Rachel will record a series of educational videos related to STEM. These videos will be published later this year.

HUMAN RELATIONS / STEAM Archive (SFAN|Portuguese GeoTech Vision) – APires

During the mission Ana would like to get to know each member of the crew, conducting interviews, to understand and register the state of mind, aspirations, and goals of each member of the Crew and to register her personal experience.
Ana would also like to register images and videos during the mission, for STEAM activities in Portugal, under the scope of “SFAN|Space For All Nations” initiative (International Institute for Astronautical Sciences, PoSSUM Program).

Mission Plan – April 30th

JAMES BURK | Commander

ALINE DECADI | Executive Officer + Crew Geologist

CÉCILE RENAUD | Greenhab Officer + Crew Biologist

JULIEN VILLA-MASSONE | Crew Engineer

ERIN “ROBOTZWRRL” KENNEDY | Crew Robotics Engineer

AUDREY DEROBERTMASURE | Medical Officer

KRIS DAVIDSON | Crew Journalist

We, the Transatlantic Mars Society, consisting of seven space professionals, plan to conduct several experiments and projects, including testing experimental robotic designs, new technologies for coordinated field science using Virtual Reality, biofeedback and pharmacology studies, simulating Mars-like conditions to grow algae for human food and oxygen production, blockchain-based voting and logistics management, and more. We aim to solve some of the challenges faced by future Mars astronauts, while also advancing technology and research for long-term human presence on Mars.

MarsVR – Coordinated Field Science Testing and Demonstrations + VR Terrain Scouting

Crew 261 will be the first to utilize the updated MarsVR application with real-time multi-participant capabilities while in simulation protocol at the MDRS. We will attempt to use it to plan and execute EVAs.

Crew 261 will be testing EVALink, a new system developed by the Mars Society’s Chicago chapter, which aims to enable real-time field science by providing long-range, low-power digital connectivity over ad hoc mesh network topologies. Powered by Meshtastic, an open-source hardware platform, EVALink will allow MDRS crew members on EVA to build an ad-hoc data network while exploring a field site, and sending back important information in near real-time, such as individual crew member’s excursion status, location information, and allow messages and photos to be sent back to the Hab (and into the VR experience) from the field.

Specifically, we first plan to utilize Garmin devices which duplicate the Meshtastic capability operationally, to build EVA experience and rigor amongst our crew. Then, we will utilize the prototype EVALink devices after performing initial field testing to ensure they are accurate and dependable. The MarsVR project team and EVALink team are available for remote support of these activities.

Bioreactor and Spirulina-Focused Experiments in GreenHab

Crew biologist Cecile Renaud is leading the crew’s effort to solve one of the challenges faced by future Mars astronauts: the need for life support systems that optimize growth conditions for food cultivation and oxygen supply. Spirulina has long been viewed as a promising food source for future Mars colonists. However, production of it requires a lot of energy, and nutrients are often wasted. Crew 261 will deploy a custom bioreactor developed by the Scotland-based company Algacraft (http://www.algacraft.com/), which simulates an active growing culture in a Mars-like environment. In addition, as part of her PhD program (UMons), Cecile will conduct biostimulation for consumable plants using Spirulina as biostimulant to improve plants health and growth.

Julien Villa-Massone, an engineer and software developer, created and put into action the software portion of the Algacraft bioreactor experiment. He will also perform in-situ testing to ensure that all operational requirements are met. Julien will use this energy-intensive device as a dispatchable load to test the first smart-grid network at MDRS. To accomplish this, he will need to add a specialized smart grid controller and use a low-power communications protocol that can prioritize a large number of appliances. This work is crucial for any isolated base where the ability of life support systems to access reliable power is necessary for human survival.

COSMOS – Pharmacological experiments

Health and Safety Officer Audrey Derobertmasure and Executive Officer Aline Decadi started the COSMOS project, a suite of experiments to test a new approach to pharmacological studies with the aim of optimizing, adapting and individualizing drug treatments. To date, very few manned pharmacokinetic/pharmacodynamic (PK/PD) experiments have been performed, due to logistical and technical constraints, none in the cardiovascular domain. We will study the elimination of caffeine from the body before, during and after the mission. We will also evaluate the impact of the extreme environment and confinement during the MDRS mission on the markers of early vascular aging thanks to new non-invasive and easily transportable vascular exploration techniques.

Atmosphinder – Wind-powered Mars Exploration Rover Experiment

Crew robotics expert, Erin Kennedy, has designed Atmosphinder (http://robotzwrrl.xyz/atmosphinder/), an innovative wind-powered rover to investigate seasonal eruptions in the south polar region of Mars and the role these geomorphic processes play in the atmospheric system of Mars. The experimental prototype is a seven-foot tall robotic wheel with wind-powered sails that propel the rover. As the wind pushes the sails, the hoops begin to turn about a central bearing that is stabilized by reaction wheels. The electronics payload is suspended in the roll cage. The electronics are used to control sail trimming, precision drive module, sensors, reaction wheels, and lights, and also contain environmental sensors.

Nexus Aurora Rover

Crew 261 will also be testing a new Mars rover designed by the Internet-based engineering collective Nexus Aurora (https://nexusaurora.org/), that has multiple science instruments and capabilities for sample collection and analysis.

High-Performance Drones for VR/360 Content Creation

Commander James Burk and crew engineer Julien Villa-Massone, who is also an experienced pilot, will test pilot a VR-enabled high performance drone designed by Adapa360 (https://adapa360.com/) of Norway to capture additional terrain segments for the MarsVR project. The drone also has utility as a tool in unfolding recon and emergency situations.

We will also fly a Mavic Air 2 to capture drone footage of the MDRS campus and key terrain segments that will eventually appear in future MarsVR projects, and for other public outreach purposes.

Astronomy Observations

Executive officer and crew astronomer Aline Decadi will harness the incredible power of the Musk Observatory, and a small personal telescope, donated by long-time Mars Society volunteer Ryan Kennedy, to perform astronomical observations related to Mars and our solar system’s current state.

Journalist-in-Residence

Finally, crew journalist Kris Davidson, a photojournalist with experience publishing work in prominent media outlets such as National Geographic, will document the crew’s activities and lifestyle at the MDRS throughout the two-week mission.

Marscoin Node & Voting/File Experiments

In a project spearheaded by noted crypto pioneer Lennart Lopin, Marscoin (https://www.marscoin.org/) is a cryptocurrency developed in 2014 with future Mars colonists in mind. Built with blockchain technology, Marscoin is poised to assume a greater role in the larger development of a fair and transparent society on Mars. During our mission we will utilize a new custom version of the Marscoin network ledger, developed by Lopin and his team, to securely and efficiently perform crew-wide voting on initiatives of common interest (similar to votes at an early Mars settlement), as well as assisting the taking of inventory and file storage (IPFS) using immutable blockchain technology. Crew 261 intends to install a Marscoin node at the Mars Desert Research Station, making use of a new general purpose computer file server that will be a permanent addition to the campus, and has the added benefit of allowing future crews to store and share research and other information relevant to the MDRS program.

UCF Behavioral Study

Crew 261 will participate in an ongoing research study, led by researcher Andres Kaosaar as a part of his PhD studies at the University of Central Florida, on how emotions and coping strategies affect teams operating in isolated, confined and extreme environments.

Mission Plan – April 16th

O V E R V I E W

Hypatia I’s Mission

Hypatia I is an all-female, multidisciplinary, and intergenerational crew, selected to participate in an analog mission to the Mars Desert Research Station (MDRS) in April 2023. Its goals include (i) conducting research related to Mars and to space exploration more broadly, (ii) developing scientific outreach and communication activities, and (iii) promoting STEM careers, particularly among young girls. The Commander of Hypatia I is Mariona Badenas Agustí, who was part of another MDRS Crew (LATAM IIII) in 2019. Inspired by that experience, Mariona made it her
goal to return to the MDRS with a team of leading Catalan female scientists. Her goal was clear: to perform high-quality space-related research and to encourage young people to pursue scientific careers. The Hypatia project was launched on February 11, 2021, coinciding with the International Day for Women and Girls in Science. On that day, Mariona Badenas Agustí and crew member Carla Conejo González (Executive Officer) met to discuss the possibility of creating Hypatia I and selecting its crew. After two years and a half of hard work, the Hypatia I team is grateful to the MDRS Executive Team for the
opportunity to conduct a Martian mission and work towards achieving our goals.

Research Projects

One of the main goals of Hypatia I is to conduct space-related research during its rotation at the MDRS. Different research projects, led by the members of Hypatia I, will be carried out in four major disciplines:

Astronomy
Space biology
Engineering
Scientific communication

Some of these research projects include:

Observation of the ‘Martian’ sky
The MDRS is a unique place to observe the night sky thanks to its low light pollution and the dry climate of the desert. The station has two telescopes with which the properties of star clusters will be studied, asteroids and other minor bodies will be searched for, and astrophotography will be used as an outreach resource for the public. Circadian rhythms in space One of the most important challenges of a future manned trip to Mars are human limitations. Astronauts have been found to have problems with sleep because they work long hours, face drastic changes in their routines, have different hours of light than on Earth, and face environmental factors that disrupt their circadian rhythms. The members of Hypatia I will use wristband devices to monitor neurophysiological constants related to sleep for 24/7 with the aim of detecting any imbalances that may affect their health and mission performance.

Aquaculture on Mars
Mars is a hostile planet to live on and grow food because the environmental factors are different from those on Earth. However, future human settlements will need resources to feed themselves. The members of Hypatia I will study how gravity alteration affects the DNA of cells, using a model fish that is used in many laboratories around the world: the zebrafish.

Single-cell intelligence
The Blob (Physarum polycephalum) will become one more member of the Hypatia I mission. It is a macroscopic single-celled organism that can move several centimeters per hour. Despite not having a nervous system or brain, the Blob is capable of learning and solving complex nutritional problems, such as finding the shortest path to feed itself. In hostile environments, the Blob can survive for decades in a state of hibernation. Inside a safety cabin designed for the mission, the Blob will be subjected to various conditions that will allow us to study its learning and decision-making abilities.

Martian GPS
The different rovers that have arrived on Mars navigate the surface of the red planet using various satellites orbiting around it. These connections are not constant and can fail. At the MDRS, we will explore two ways of navigating through the Utah desert. The more classic way is to use the stars as a reference in the night sky. The more innovative way is to use the constellation of CubeSats nano-satellites orbiting above to navigate the surface.

Iron batteries powered by urine
Batteries are a key element in a manned space mission, but one of the greatest burdens of future trips to Mars is that rockets can not carry too much weight if they want to save on fuel. Therefore, this research project aims to test batteries based on iron chemistry, an abundant material on the red planet, that will use the urine of the crew to function.

Daily reports to planet Earth
The crew of Hypatia I will have to write a daily report that explains day by day the activities of the crew at MDRS. The document will also include a description of the progress of the different research projects. At the same time, it will also include photos of the highlights of the day to stay in touch with Earth.

HYPATIA_MissionPlan.pdf

Biographies, photos and mission patch – April 16th

Crew biographies, photos and mission patch

Mariona Badenas-Agustí
Crew Commander & Crew Astronomer
Mariona Badenas Agusti earned a degree in Astrophysics from Yale University, a master’s degree in Astrophysics, Cosmology, and High Energy Physics from the Autonomous University of Barcelona and the Institute for Space Studies of Catalonia, and is now pursuing a Ph.D. in Planetary Sciences at the Massachusetts Institute of Technology (MIT). At MIT, she uses computational tools and observations from space telescopes to study stellar evolution and to discover and characterize exoplanets (planets in orbit outside the Solar System). In parallel, she spends much of her free time giving educational lectures on the universe and space exploration. Outside academia, she is very interested in the aerospace industry and is a member of the Space Generation Advisory Council and also of Women in Aerospace Europe.

Carla Conejo González
Crew Executive Officer & Crew Biologist
Carla Conejo González is the co-founder of Polaris, a science-travel app. She is also the former Head of Science Programs at the Fundació Catalunya La Pedrera. She earned a degree in Human Biology by the Pompeu Fabra University, a master’s degree in Pharmaceutical and Biotechnological Industry by the same university and a postgraduate’s degree in Science Communication by the University of Vic. She has done research in neurobiology at the Center for Genomic Regulation (CRG) in Barcelona, in Spain, and the University of Bologna, in Italy. She has worked as scientific advisor and documentalist in the TV3 program Quèquicom. She has also been a volunteer and Director of International Relations in MAGMA, Association for Promoting Youth Research, representative at the International Science and Engineering Fair (ISEF) in the USA, and Vice-President of the science diplomacy association Scientists Dating Forum. She combines her passion for science education and outreach with travelling to get to know this special planet that we have been lucky to inhabit.

Ariadna Farrés Basiana
Crew Scientist & Health and Safety Officer
Ariadna Farrés Basiana has a Ph.D. in Applied Mathematics by the University of Barcelona. Specialized in astrodynamics and celestial mechanics, she has devoted part of her scientific career to the study of the use of solar sail for missions in the Earth-Sun system. Currently she works with the Flight Dynamics team at NASA Goddard Space Flight Center, as an expert on the impact solar radiation pressure has on Liberation point orbits, and studying how to minimize the cost of station-keeping maneuvers. Collaborating with the James Webb Space Telescope and Nancy Grace Roman Space Telescope.

Laia Ribas
GreenHab Officer
Laia Ribas is a senior researcher at the Institute of Marine Sciences of the Spanish National Research Council (CSIC). She studied at the University Autonomous of Barcelona where she obtained her Ph.D. in biological sciences in 2006. She worked as a postdoc at the Imperial College of London, United Kingdom. She leads her own research team (Repro-Immune Team) to study the effects of the environmental factors on the sexual phenotype of fish, focusing on the interactions between the reproductive and the immune systems. She is interested in identifying molecular markers with the aim of improving aquaculture production. She is a member of SONET and participated in the awarded Nüwa project to design a city for 1 million people on Mars. She is committed to outreach by participating and leading projects, e.g. Sex in the Sea-ty.

Núria Jar
Crew Journalist
Núria Jar is a freelance journalist, specialized in science and health. She currently collaborates with the radio program El Matí de Catalunya Ràdio, the public science news agency SINC and the magazine Muy Interesante. She also co-directs the 5W Magazine podcasts and coordinates the radio workshop for the Master’s Degree in Scientific, Medical and Environmental Communication at Pompeu Fabra University (UPF). With more than 10 years of experience in journalism, she has worked for the main Catalan and Spanish media outlets, such as El País, La Vanguardia and TV3, as well as international journals, such as Scientific American. She recently produced the audio series ‘The Coronavirus Scientists’, funded by COVID emergency funds for journalists from the National Geographic Society. Throughout her career, she has received numerous awards, such as the Concha García Campoy Award in the written press category for the report ‘Cuando el médico se convierte en paciente’, published in La Vanguardia. She has a Degree in Journalism from the Autonomous University of Barcelona and Master’s Degree in Scientific, Medical and Environmental Communication by UPF. She is also a member of the Catalan Association of Scientific Communication and the Spanish Association of Scientific Communication. She has also taken an active part in different editions of the World Conference of Science Journalists (WCSJ) in Seoul, South Korea, and Lausanne, Switzerland.

Neus Sabaté
Crew Engineer
Neus Sabaté is an ICREA Professor at the Institute of Microelectronics of Barcelona and co-founder of Fuelium, a spin-off company that aims at developing and commercializing paper-based batteries for single use portable devices. Physicist by education, she has devoted her scientific career to the development of microsystems such as physical sensors and power sources. She is the leader of the Self-Powered Engineered Devices Group (SPEED) that focuses on the development of sustainable diagnostic devices that contain a minimal amount of electronic components and extract the energy required to perform the test from the sample under analysis. Her research has been granted by relevant institutions like the European Research Council or the Bill and Melinda Gates Foundation. She is highly motivated to take her research out of the lab and test it in real environments as a first step of a successful deployment of her inventions to society.

Cesca Cufí-Prat
Crew Mission Specialist
Cesca Cufí Prat is an aerospace engineer specialized in space systems. She is graduated in Aerospace Engineering at Universitat Politècnica de Catalunya (UPC, Spain) and earned a master’s degree in Aerospace Engineering with a specialization in Space Systems at Institute Supérieur de l’Aeronautique et de l’Espace (ISAE Supaero, France). She has been working on the field of attitude and orbital control systems (AOCS) for the last three years in Airbus Defence and Space where her work is currently focused on high precision instruments for Earth observation.

Mission Plan – April 2nd

During these two weeks, our crew will aim to accomplish their experiments in the best way possible. Every crewmate has chosen an experiment in their domain of expertise and has prepared it thoroughly. Here are the details and mission plans of every experiment.

“Confinement FOMO” – Aglaé Sacré

FOMO, “Fear of missing out”, can appear when we are cut out of society. The Mars simulation completely cuts the crew off of the network and the outer world, which makes it the best place to study how the lack of social media affects the mental condition of not wanting to miss on something. This analysis will be done by anonymous questionnaires before, during (30 min every other day) and after the mission. This way Aglaé could compare how the crew used to use social media, how they predicted they would live without it and how they actually lived without it. Aglaé will be doing this for her Master’s thesis that she will present in June to the jury of UCLouvain.

Collaborator: François Lambotte, Director of School of Communication at UCLouvain.

“Radiation: how attached are we?” – Thomas Stinglhamber

Every day, everywhere, different types of radiation attack us. On Mars, radiation will be way more brutal and dangerous than on Earth due to the difference of the atmosphere. It is thus very important to be able to have easy ways to measure the dosage of this radiation. Thomas will install dosimeters both inside and outside the station to check how radiation proof the station actually is. The crewmates also get an individual dosimeter that they wear at all times to measure their personal dosage. Complementary to this, Thomas will use a Gamma detector to map out the dosage of the soil and try to find radioactive isotopes near the station.

Collaborator: Pascal Froment, CEO of BeSure

“High Speed Rotor Manufacturing” – Gwenael le Bussy

The Martian atmosphere is a hundred times less dense than the one on Earth. This means that every flying object we would like to use for observation, scouting or measurements needs to be adapted to the physics of that new environment. Like the ones on Ingenuity, the rotor blades have to have a special shape. Naturally, every piece of equipment may encounter a problem and need to be repaired or replaced. The problem cannot be predicted precisely in advance, which means that we need an adaptable solution. Gwenael will study how he can use 3D printing to model (with SolidWorks with NACA profile) and print rotor blades for the Martian atmosphere. Afterwards, he will test them with a high speed motor and measure their thrust with a scale.

“Space Oddity” – Ioana Dimitrova

Long term spaceflight separates astronauts from society and their loved ones for months and months. It also keeps them confined without leaving them a possibility to feel free and do whatever they want. This can lead to mental health problems, tensions within the team and can put the mission at risk. Music could be a cheap, easily transportable and effective solution to this problem. Choosing your personal music to help you relax could have multiple benefits. It could help you transport yourself elsewhere, work through your emotions and stimulate your senses. Ioana will test if this theory is true by measuring cardiac parameters during relaxing times with and without music chosen by the crew. The technology used for the measurements is KINO by HeartKinetics. It is an app that you put on your chest and that analyses your heart.

Collaborator: HeartKinetics

“Hide and seek during radiation storms” – Augustin Tribolet

As we mentioned earlier, radiation is an important factor in a Mars mission. If we are to live there or try to make bacteria or plants survive, we must find the most protected areas on the surface. An easy way to be able to find those places could be to use a drone to map out the area and to find these places. Augustin will use a drone to scan the surface and generate a 3D model by photogrammetry. This digital technique allows us to build the 3D model from photographic images. He will work closely with Agnes who studies extremophiles (see below) to analyse how effective his hiding places actually are.

Collaborator: Jerome Loic, Bernard Foing, Jeff Rayner, CEO of MXTreality

“Mars well-being” – Ttele Hiriart

Confinement, isolation, extreme conditions… All these factors affect mental health and team dynamics. How do girls react differently to boys? How does the team work together? How do the dynamics evolve? Which teamwork tools actually work? During the mission, Ttele will keep a diary of her observations of the team and different crewmates. She will compare these observations with the ones made by other mission simulations in Antarctica for example. She will also introduce some teamwork exercises to see if they help. At the end of the mission, she will present her observations of the ups and downs of the mission, how the team interacted and different lessons the team has learned or must work on for future missions.

“I will survive” – Agnes Dekeyser

I will survive !

As you may know, the planet Mars is currently not habitable for life as we know it due to its extreme

conditions. We are talking about an atmospheric pressure that is 1% of that found on Earth (at sea

level), an average temperature of -60°C, and an atmosphere composed of only 0.1% oxygen.

However, there are microorganisms on Earth that could withstand such conditions. They are called

"extremophiles". These are microorganisms that live in conditions that are lethal to most other

microorganisms. They live on the seabed, in the earth’s crust, in glaciers, and in many other extreme

environments. During this simulated mission on the planet Mars, our Crew Executive Officer will

study the viability of two strains of extremophiles after exposition to MDRS environmental conditions

: Deinococcus Radiodurans and Cupriavidus Metallidurans. Each strain will be exposed outside for 8

days in anaerobic condition. Their viability will be compared to their unexposed analogues based on

CFUs (Colony-Forming-Units) analysis.

“We are what we eat” – Antoine de Barquin

The goal of his experiment is to understand the impact of specific nutrition and confinement on the intestinal flora of astronauts. To conduct this study, a sample of each crew member was taken before departure to perform an analysis of intestinal bacteria by targeted metagenomics. This analysis is performed at the LIMS MBnext laboratory which collaborates with our crew for this experiment. Antoine will monitor everything the crew eats, type of food, quantities, time of the day etc. He will start analysing the data during the mission and will conclude the analysis after the return on Earth. The crew will give “post-mission” samples. This way, Antoine will be able to compare and analyse how the team is affected by everyone’s microbiote.

Collaborator: LIMS MBnext Laboratory

Copyright © The Mars Society. All rights reserved. | Main Site