Crew 204 Mission Summary – February 9th

Nix Olympica – Crew 204

presents…

“Journey to Mars”

Authors :

Avishek Ghosh (Commander)

Pranit Patil (XO & Greenhab Officer)

Kunal Naik (Crew Engineer)

Sonal Baberwal (HSO & Crew Journalist)

Mars Desert Research Station (MDRS)

08.02.2019

Acknowledgement:

We express our sincere gratitude to the delegates of MDRS foundation, Dr Robert Zubrin, Dr. Shannon Rupert & Carie Fay for providing us this opportunity to participate in this simulation mission. We convey our sincere thanks to the associates of MDRS looking after various areas. We sincerely thank the mission support and CapCom for their continuous support and cooperation to make our simulation better by educating us to maintain the right protocol. We want to thank Mr. Atila and Mr. David for their friendly and comforting nature with all support. Finally, we would like to thank our friends and supporters without whom this mission would have not been possible.

“The plants, the lab,

The rovers, the Hab.

The love, the care,

The friendship we share.

The food to cook,

The windows we look.

The signing in and signing off,

The mission support and Cap Com.

The EVAs we risked,

Yes, everything will be missed!”

~ Sonal Baberwal.

Introduction:

Reaching Mars was one of humanity’s most ambitious undertaking. The direct result of the decades-long global space race and the sheer audacity of humans to take exploration to the fastest reaches of our solar system. But make no mistake, this is no easy journey! The trip to Mars is as dangerous and challenging as anything we have ever tried. The journey alone seems extremely difficult, given the hostile environment of space. Nevertheless, if we manage to reach Mars (and not die on impact), it is empirical that if extremely difficult to survive the cold red planet! MDRS has bestowed a great opportunity for us, an all Indian crew this time, to drain our fears and it has given us insight beyond the horizon. It has given us a short glimpse, of how it would really be to live on Mars. The team – Crew 204 is a group of a super enthusiastic aspiring astronaut, who is determined to contribute their part towards the isolation program at MDRS. It becomes difficult at times to be all alone in isolation, but the Crew-204 is determined to conduct their research, no matter what the situation be. Our participation in MDRS will allow us to establish a research framework to continue our collaborative research activities for a long-term space exploration in near future. This inquisitiveness to encounter a thrilling environment would be possible to find at Mars Desert Research Station (MDRS).

The Crew 204 is a group of astronaut aspirants committed towards contributing for ongoing researches that are conducted under isolation during MDRS missions. Crew 204 is an organized team which outlines the framework to understand the necessity of performing scientific and technical experiments in isolation. We have realized how important it is to expand the boundary of exploration with an intercultural and interdisciplinary aspect. Our participation in MDRS will allow us to establish a research framework to continue our collaborative research activities for a long-term space exploration in near future.

Mission Objectives:

When it comes to colonizing Mars, it should be taken into account that the environment on the red planet is extremely hostile. Crew-204 is simulating a real-life environment on how life would be on Mars. We are made to experience a real-life adventure through analog. Considering the facts of possible challenges to survive in the extreme environment on MARS, the Crew 204 is paving their way to pursue a real-life analog simulation under isolated environment. We are instigated to experience a real-life adventure through analog simulation while resembling an extreme environment and living in isolation with crewmates in surroundings similar to the planet MARS.

This mission is designed to gain knowledge and practical experience working with crewmates with diverse background with intercultural and international aspects. This mission would also allow us gaining insight scenarios of an astronaut program and selection process for the long-duration space mission. With the recent technological advancements and scientific knowledge base, it is very important to perform some sophisticated assessment to find another frontier to explore and develop the strategic methodology, which could be beneficial to develop effective team compositions and technologies for the long-duration space mission. All this is just a small step towards the new adventure, that will take us, even deeper into the stars above!

EVA Summary:

In any mission, the ‘Extra-Vehicular Activity’ is considered as a fundamental element. However, the first Sol started with an invitation from a great explorer and admirer of nature Mr. Jad Davenport. It was another wonderful opportunity to exhibit the MDRS crew preparation for the simulation. Crew 204 feels honored to participate in a session invited by such personnel. Followed by this, the Crew 204 had performed total 10 EVA’s for general exploration, collecting soil samples while capturing some beautiful moments, landscapes and mesmerizing beauty of the nature.

Our Research:

Our Research at MDRS aimed:

  1. Green Hab
  2. Science behind 3D printing
  3. Experimental GreenHab
  4. Design and development of Martian Rover for Lava tube exploration

Research Summary:

  1. GreenHab (Pranit Patil):

No Astronaut launches for space with their fingers crossed. That’s NOT how we deal with risks. We calculate and recalculate and re-recalculate our equations and then bid Godspeed. GreenHab was one such moment of introspection for me. It gave us an insight into how something as simple as gardening, can be so much revealing. Below is a summary of how it all has been so far.

On January 30th, we started with 267.5 gallons of water in the tank, the sprouts beans were planted and were kept in damp soil and the next day, it already started sprouting. These sprouts were later harvested on February 1st. Meanwhile, another mixture of seeds of Mat bean, Kidney bean, Fenugreek, and Sesame was kept ready for planting. These two were kept in damp soil and the moisture in it was always maintained. A mist of water was sprayed on them every once a while to ensure that the soil doesn’t dry out.

In a couple of days, the seeds busted out to give way to the newborn roots. All the sprouts in every soil tray had good growth. A couple of days more and we got used to the petrichor of soil; it somehow had a relaxing effect on the mind. On February 5th a tiny leaf appeared, and we hopped in joy. We can only imagine what a great moment of introspection in human history if we could be the first people to find that one little-fossilized flower on Mars. The next day, after almost 73 gallons, hours of supplementary light and lots of care later, the plants were noted to be in great shape and health.

Of all this time, the crops were mostly under room temperature but not below 16°C. And they received 5 hours of supplementary light each day. The moisture in the soil was observed to be significantly low around 3 o’clock in the afternoon but spiked back to normal in the evening. A net 12 gallons of water was sprinkled on the crops

  1. Science behind 3D Printing:

Since a decade, human being had been envisioning to establish a colony on Mars. Human colonization on Mars would be challenging because of the extreme environment but, it could be a perfect outpost to accumulate resources outside the Earth’s gravitational field. An operational Martian village would be economical, resourceful and efficient for human settlement and conduct further missions into deep space.

Additive manufacturing (a.k.a 3D printing) has become a choice of interest for building a habitat on Mars. The purpose of this experiment is to find conceptual design and evaluate the feasibility of using 3D printing technology for building infrastructure and habitats on Mars.

The aim of this experiment is to evaluate the additive manufacturing (3D printing) capabilities with artificial mars soil simulant to develop structures. In this method, the Martian soil simulant is mixed with binder chemicals in a certain ratio or proportion to obtain a colloidal suspension. The prepared ink is placed inside a tube and extruded to develop 3D structures using a customized 3D printer. A trial experiment has been performed with MARS soil simulant which has been utilized to prepare ink mixed with a polymer. The prepared ink has been 3D printed to develop some shapes and structures. The 3D printed bodies have survived and remained intact through an open-air drying for several weeks.

  1. Experimental GreenHab (Avishek Ghosh, Sonal Baberwal):

It feels great to see the initial stage of germination and plant growth in different soil compositions that are prepared by varying the amount of garden soil and carbon dust (extracted from charcoal) by combining with MDRS soil and JSC-MARS-1. The JSC-MARS-1 and it’s organic mixtures seem more promising as compared to local MDRS soil mixtures. The plants that are transferred from regular garden soil to JSC-MARS-1 Mixtures are surviving and growing even the germinated seeds started sprouting. But, the MDRS local soil and it’s organic compositions seems to hold less capacity to provide enough nutrients to the plants which started dying on the first day of transfer. At the same time, the water is drying out quickly from these mixtures. Although it is the initial stage of the investigation, however, more iterations through a long duration observation are required to derive the conclusions.

  1. Design and development of Martian Rover for Lava tube exploration (Kunal Naik):

In the last few years, there are lot of features like caves, vertical holes, lava tubes and basins on the Lunar and the Martian surface that has been discovered by various rover missions as well as Orbiters such as ISRO’s Chandrayaan-1, Maven, Curiosity – Opportunity rover, NASA’s Lunar Reconnaissance Orbiter, Japan’s Lunar Orbiter SELENE. For future Lunar- Martian exploration and future human settlement, skylight is argued as the confirmed underground location. To investigate the lava tubes, The dual rover system will be deployed on the surface, one with the parent rover (4 wheeled rover ‘MoonRaker’) and second is the child rover (2 wheeled rover ‘Koguma’). The parent rover will be anchored on the cliff while the child rover will be deployed to investigate the lava tubes with the help of flexible length tether providing power and data transmission from mother to the child rover.

MDRS is the best platform to test the child rover tether system. The child rover project is a 2 – wheel rover system designed and developed by Sipna College of Engineering, India with collaboration with Nix Olympica Crew 204. The rover prototype was based on the IOT platform having the capabilities to be operated from India with live Audio/Video streaming. The project was undertaken by the crew Engineer. There was a problem with the rover inboard system during the transportation to MDRS the problem was solved during the mission. The main objective of the rover was to test the rover system at uneven inclined plane at MDRS platform in person and remotely from India. A local server was created to operate the rover connecting via the onboard Wifi Module and cloud computing platform. Various test like Indoor, outdoor, Wifi Module range test, Local Server test, tether test as well as Audio/Video tests were performed during the simulation. The project concluded well as all the test were a success except the tether test. The eye catching about the rover was being operated from Sipna College of Engineering campus India which is 13000 kms away from MDRS. The rover still needs some upgradation with its tether system and little work on its stabilization.

Journalist perspective:

It had been a difficult journey for the entire crew, to convert the impossible into a successful mission. Leaving the family and being into a complete isolated place with limited access to internet has been challenging. However, this had been a golden opportunity to have a self-analysis and gain an experience of extreme environment. This opportunity has made us aware of the fact that being an astronaut is not only a dream, this profession holds lot of responsibilities! We had an incredible opportunity to operate a rover from India, and we believe that this initiative will inspire other aspirants just like us to pursue their dreams on platforms like MDRS.

Final Notes and Remarks:

In general, there were no anomalies, The Hab operations, RAMM operations, Green Hab Operation were nominal. The crew 204 came up with their own projects which were successfully carried out along with their daily MDRS duties. The Crew was a best fit though it was a small crew, the objectives were accomplished. The workload was more but the team members had good bonding, understanding, trust, maturity, professionalism among each other. Water is life, Water was used very carefully in daily activities, the crew used ~ 300 gallons of water including the Green Hab water consumption. The food was sufficient for the crew of 4 members. The help and support from Mission Support is applaudable as they were very attentive and responsive to reports and requests.

Conclusion:
Living in isolation for days, with none other than the crew isn’t as easy as it sounds. One may have personal differences, habits or daily rituals that the other person isn’t used to. The MDRS has taught us – Crew 204, many things along with the baseline objective. It has taught us to live in harmony, to develop interpersonal relations, to work – not only for ourselves, but for the greater good of the entire team. And most importantly, it gave us hope and reminded us that “Life finds a way” not matter how hostile or seemingly impossible the environment.

Mission Summary – February 8th

Nix Olympica – Crew 204 presents…
“Journey to Mars”

Authors :
Avishek Ghosh (Commander)
Pranit Patil (XO & Greenhab Officer)
Kunal Naik (Crew Engineer)
Sonal Baberwal (HSO & Crew Journalist)

Acknowledgement:
We express our sincere gratitude to the delegates of MDRS foundation, Dr Robert Zubrin, Dr. Shannon Rupert & Carie Fay for providing us this opportunity to participate in this simulation mission. We convey our sincere thanks to the associates of MDRS looking after various areas. We sincerely thank the mission support and CapCom for their continuous support and cooperation to make our simulation better by educating us to maintain the right protocol. We want to thank Mr. Atila and Mr. David for their friendly and comforting nature with all support. Finally, we would like to thank our friends and supporters without whom this mission would have not been possible.

“The plants, the lab,
The rovers, the Hab.
The love, the care,
The friendship we share.
The food to cook,
The windows we look.
The signing in and signing off,
The mission support and Cap Com.
The EVAs we risked,
Yes, everything will be missed!”
~ Sonal Baberwal.

Introduction:
Reaching Mars was one of humanity’s most ambitious undertaking. The direct result of the decades-long global space race and the sheer audacity of humans to take exploration to the fastest reaches of our solar system. But make no mistake, this is no easy journey! The trip to Mars is as dangerous and challenging as anything we have ever tried. The journey alone seems extremely difficult, given the hostile environment of space. Nevertheless, if we manage to reach Mars (and not die on impact), it is empirical that if extremely difficult to survive the cold red planet! MDRS has bestowed a great opportunity for us, an all Indian crew this time, to drain our fears and it has given us insight beyond the horizon. It has given us a short glimpse, of how it would really be to live on Mars. The team – Crew 204 is a group of a super enthusiastic aspiring astronaut, who is determined to contribute their part towards the isolation program at MDRS. It becomes difficult at times to be all alone in isolation, but the Crew-204 is determined to conduct their research, no matter what the situation be. Our participation in MDRS will allow us to establish a research framework to continue our collaborative research activities for a long-term space exploration in near future. This inquisitiveness to encounter a thrilling environment would be possible to find at Mars Desert Research Station (MDRS).

The Crew 204 is a group of astronaut aspirants committed towards contributing for ongoing researches that are conducted under isolation during MDRS missions. Crew 204 is an organized team which outlines the framework to understand the necessity of performing scientific and technical experiments in isolation. We have realized how important it is to expand the boundary of exploration with an intercultural and interdisciplinary aspect. Our participation in MDRS will allow us to establish a research framework to continue our collaborative research activities for a long-term space exploration in near future.

Mission Objectives:
When it comes to colonizing Mars, it should be taken into account that the environment on the red planet is extremely hostile. Crew-204 is simulating a real-life environment on how life would be on Mars. We are made to experience a real-life adventure through analog. Considering the facts of possible challenges to survive in the extreme environment on MARS, the Crew 204 is paving their way to pursue a real-life analog simulation under isolated environment. We are instigated to experience a real-life adventure through analog simulation while resembling an extreme environment and living in isolation with crewmates in surroundings similar to the planet MARS.
This mission is designed to gain knowledge and practical experience working with crewmates with diverse background with intercultural and international aspects. This mission would also allow us gaining insight scenarios of an astronaut program and selection process for the long-duration space mission. With the recent technological advancements and scientific knowledge base, it is very important to perform some sophisticated assessment to find another frontier to explore and develop the strategic methodology, which could be beneficial to develop effective team compositions and technologies for the long-duration space mission. All this is just a small step towards the new adventure, that will take us, even deeper into the stars above!

EVA Summary:
In any mission, the ‘Extra-Vehicular Activity’ is considered as a fundamental element. However, the first Sol started with an invitation from a great explorer and admirer of nature Mr. Jad Davenport. It was another wonderful opportunity to exhibit the MDRS crew preparation for the simulation. Crew 204 feels honored to participate in a session invited by such personnel. Followed by this, the Crew 204 had performed total 10 EVA’s for general exploration, collecting soil samples while capturing some beautiful moments, landscapes and mesmerizing beauty of the nature.

EVA Sol Team Duration Destination Rovers used
1 2 Avishek, Kunal 1 hr 35 mins Pooh’s corner Spirit
2 2 Sonal, Pranit 1 hr 25 mins Pooh’s corner Opportunity
3 3 Avishek, Kunal 1 hr 30 mins Reservoir and Dam Spirit, Opportunity
4 4 Sonal, Avishek 55 mins Kissing camel ridge Opportunity
5 5 Kunal, Pranil 2 hr 4 5 mins White moon Opportunity, Spirit
6 8 Kunal, Sonal 1 hr Hab ridge Walking
7 9 Avishek, Pranit 1 hr 15 mins Hab ridge Walking
8 10 Kunal, Sonal 45 mins Hab area Walking
9 11 Avishek, Sonal 2 hr 30 mins Widow’s peak Opportunity, Curiosity
10 11 Kunal, Pranit 1 hr 15 mins Gateway to Lith Spirit

Our Research:
Our Research at MDRS aimed:
1. Green Hab
2. Science behind 3D printing
3. Experimental GreenHab
4. Design and development of Martian Rover for Lava tube exploration

Research Summary:
1. GreenHab (Pranit Patil):
No Astronaut launches for space with their fingers crossed. That’s NOT how we deal with risks. We calculate and recalculate and re-recalculate our equations and then bid Godspeed. GreenHab was one such moment of introspection for me. It gave us an insight into how something as simple as gardening, can be so much revealing. Below is a summary of how it all has been so far.

On January 30th, we started with 267.5 gallons of water in the tank, the sprouts beans were planted and were kept in damp soil and the next day, it already started sprouting. These sprouts were later harvested on February 1st. Meanwhile, another mixture of seeds of Mat bean, Kidney bean, Fenugreek, and Sesame was kept ready for planting. These two were kept in damp soil and the moisture in it was always maintained. A mist of water was sprayed on them every once a while to ensure that the soil doesn’t dry out.

In a couple of days, the seeds busted out to give way to the newborn roots. All the sprouts in every soil tray had good growth. A couple of days more and we got used to the petrichor of soil; it somehow had a relaxing effect on the mind. On February 5th a tiny leaf appeared, and we hopped in joy. We can only imagine what a great moment of introspection in human history if we could be the first people to find that one little-fossilized flower on Mars. The next day, after almost 73 gallons, hours of supplementary light and lots of care later, the plants were noted to be in great shape and health.

Of all this time, the crops were mostly under room temperature but not below 16°C. And they received 5 hours of supplementary light each day. The moisture in the soil was observed to be significantly low around 3 o’clock in the afternoon but spiked back to normal in the evening. A net 12 gallons of water was sprinkled on the crops daily.

2. Science behind 3D Printing:
Since a decade, human being had been envisioning to establish a colony on Mars. Human colonization on Mars would be challenging because of the extreme environment but, it could be a perfect outpost to accumulate resources outside the Earth’s gravitational field. An operational Martian village would be economical, resourceful and efficient for human settlement and conduct further missions into deep space.

Additive manufacturing (a.k.a 3D printing) has become a choice of interest for building a habitat on Mars. The purpose of this experiment is to find conceptual design and evaluate the feasibility of using 3D printing technology for building infrastructure and habitats on Mars.

The aim of this experiment is to evaluate the additive manufacturing (3D printing) capabilities with artificial mars soil simulant to develop structures. In this method, the Martian soil simulant is mixed with binder chemicals in a certain ratio or proportion to obtain a colloidal suspension. The prepared ink is placed inside a tube and extruded to develop 3D structures using a customized 3D printer. A trial experiment has been performed with MARS soil simulant which has been utilized to prepare ink mixed with a polymer. The prepared ink has been 3D printed to develop some shapes and structures. The 3D printed bodies have survived and remained intact through an open-air drying for several weeks.

3. Experimental GreenHab (Avishek Ghosh, Sonal Baberwal):
It feels great to see the initial stage of germination and plant growth in different soil compositions that are prepared by varying the amount of garden soil and carbon dust (extracted from charcoal) by combining with MDRS soil and JSC-MARS-1. The JSC-MARS-1 and it’s organic mixtures seem more promising as compared to local MDRS soil mixtures. The plants that are transferred from regular garden soil to JSC-MARS-1 Mixtures are surviving and growing even the germinated seeds started sprouting. But, the MDRS local soil and it’s organic compositions seems to hold less capacity to provide enough nutrients to the plants which started dying on the first day of transfer. At the same time, the water is drying out quickly from these mixtures. Although it is the initial stage of the investigation, however, more iterations through a long duration observation are required to derive the conclusions.

4. Design and development of Martian Rover for Lava tube exploration (Kunal Naik):
In the last few years, there are lot of features like caves, vertical holes, lava tubes and basins on the Lunar and the Martian surface that has been discovered by various rover missions as well as Orbiters such as ISRO’s Chandrayaan-1, Maven, Curiosity – Opportunity rover, NASA’s Lunar Reconnaissance Orbiter, Japan’s Lunar Orbiter SELENE. For future Lunar- Martian exploration and future human settlement, skylight is argued as the confirmed underground location. To investigate the lava tubes, The dual rover system will be deployed on the surface, one with the parent rover (4 wheeled rover ‘MoonRaker’) and second is the child rover (2 wheeled rover ‘Koguma’). The parent rover will be anchored on the cliff while the child rover will be deployed to investigate the lava tubes with the help of flexible length tether providing power and data transmission from mother to the child rover.

MDRS is the best platform to test the child rover tether system. The child rover project is a 2 – wheel rover system designed and developed by Sipna College of Engineering, India with collaboration with Nix Olympica Crew 204. The rover prototype was based on the IOT platform having the capabilities to be operated from India with live Audio/Video streaming. The project was undertaken by the crew Engineer. There was a problem with the rover inboard system during the transportation to MDRS the problem was solved during the mission. The main objective of the rover was to test the rover system at uneven inclined plane at MDRS platform in person and remotely from India. A local server was created to operate the rover connecting via the onboard Wifi Module and cloud computing platform. Various test like Indoor, outdoor, Wifi Module range test, Local Server test, tether test as well as Audio/Video tests were performed during the simulation. The project concluded well as all the test were a success except the tether test. The eye catching about the rover was being operated from Sipna College of Engineering campus India which is 13000 kms away from MDRS. The rover still needs some upgrades with its tether system and little work on its stabilization.

Journalist perspective:
It had been a difficult journey for the entire crew, to convert the impossible into a successful mission. Leaving the family and being into a complete isolated place with limited access to internet has been challenging. However, this had been a golden opportunity to have a self-analysis and gain an experience of extreme environment. This opportunity has made us aware of the fact that being an astronaut is not only a dream, this profession holds lot of responsibilities! We had an incredible opportunity to operate a rover from India, and we believe that this initiative will inspire other aspirants just like us to pursue their dreams on platforms like MDRS.

 

Final Notes and Remarks:
In general, there were no anomalies, The Hab operations, RAMM operations, Green Hab Operation were nominal. The crew 204 came up with their own projects which were successfully carried out along with their daily MDRS duties. The Crew was a best fit though it was a small crew, the objectives were accomplished. The workload was more but the team members had good bonding, understanding, trust, maturity, professionalism among each other. Water is life, Water was used very carefully in daily activities, the crew used ~ 300 gallons of water including the Green Hab water consumption. The food was sufficient for the crew of 4 members. The help and support from Mission Support is applaudable as they were very attentive and responsive to reports and requests.

Conclusion:
Living in isolation for days, with none other than the crew isn’t as easy as it sounds. One may have personal differences, habits or daily rituals that the other person isn’t used to. The MDRS has taught us – Crew 204, many things along with the baseline objective. It has taught us to live in harmony, to develop interpersonal relations, to work – not only for ourselves, but for the greater good of the entire team. And most importantly, it gave us hope and reminded us that “Life finds a way” not matter how hostile or seemingly impossible the environment.

Mission Summary – Crew 203

MDRS Crew 203

Universidad Nacional de Colombia

Mission summary

Crewmembers

Oscar I. Ojeda – Commander
David Mateus – Executive Officer
Yael Méndez – Crew Scientist
Liza Forero – Crew Geologist
Hermes Bolivar – Greenhab Officer
Santiago Vargas – Crew Astronomer
Freddy Castañeda – Crew Engineer

 

Description

Crew 203 is the first time a 100% Colombian crew participates on the MDRS. It was 2 weeks rotation on which outreach, technology, and science projects were developed. The crew was comprised of 7 members, 1 of which operated remotely, the Crew Astronomer. The background of the crewmembers is on science and engineering majors, mostly focused on space applications, and planetary sciences and astrobiology. The initiative to develop the project arises from different interest on space exploration from research groups of Universidad Nacional de Colombia, the Aerospace Research and Development Group, GIDA-UN, the Astrobiology and Planetary Sciences Group, GCPA, and the National Astronomical Observatory. It is important to notice that Universidad Nacional de Colombia is the largest public university in the country, and has several majors, all together in the same campus, which leads to a highly interdisciplinary environment.

The crew had 2 broad lines of work towards the work on the station, the first one is related to outreach, and the second one is related to science and technology. The interest in developing outreach projects is related to the fact that Colombia does not have a well-developed space field, and this kind of opportunities provide a platform to develop several types of outreach activities, from general to specialized public. In fact, as of the beginning of the rotation, the crew had received exposure to national media. The second line of work is related more specifically to the areas of expertise of the crewmembers, developing projects following years of studies and preparation, and, as it usually happens in space exploration, collaboration with teams left back on Earth.

We are representing our country and university, and for that we picked two elements, the first one is our mascot, a red macaw, or Guacamaya, called Marsta Leticia, native from the forests of South America, and very representative because its feathers carry the colors of the flag of Colombia. The composed name, as traditionally Colombians have, is a transliteration of the name Marta, to include the word Mars, combined with Leticia, which is the capital city of the Amazonas department. Second, our patch is dominated by the colors blue and gold, the owl represents our university, which is shaped like an owl, as designed by Architect Leopoldo Rother, the blue in the background represents Earth, and the red eyes of the owl represent that we have our sight set on Mars. Finally, the golden color represents the El Dorado legend, the ancient riches and traditions of our indigenous people. 

 

Goals

General

To successfully execute a crew rotation on a Martian analog comprised in its entirety by Colombian crewmembers, executing science, technology, and outreach projects.

Specific

Learn about the dynamics of an analog mission, oriented towards future training of crews.

Develop a series of scientific and technological projects oriented towards the future of space exploration.

Generate contents which will serve as a basis for developing outreach projects and activities.

 

Acknowledgements

MDRS Crew 203 wants to acknowledge and thank all the people and institutions that made this possible. It’s been a year-long process that required a significant amount of effort from several people. We would like to start by thanking The Mars society, in head of its president, Dr. Robert Zubrin, as well as Director Shannon Rupert, and Atila Meszaros, who made us feel safe and welcomed in this vastness. We would also like to thank all the Capcom officers who were ready to take our reports, comments, and bad jokes during these 2 weeks. And also, all the people behind the scenes working actively to make this possible, Dr. Peter Detterline, David Murray, Scott Davis, and all of those whose name I forget to mention, but surely helped us make our mission smoother and wonderful.

We also want to thank Universidad Nacional de Colombia, our academic home, which allowed us to cross paths and dream about space together. The groups and institutions we belong to, The Aerospace Research and Development Group, GIDA-UN, The Planetary Sciences and Astrobiology Group, GCPA, The National Astronomical Observatory, OAN, and every one of the members which helped us even in the tiniest bit to make this possible.

 

Outcome

After having spent 14 days in the station, the crew considers the mission a success. While some of the experiments and research happened slower than expected, the general and specific goals were carried out successfully and we leave the station with a sense of accomplishment, and knowing that the experience acquired will serve to prepare future crews, and to develop better science and technology that will not only serve for the future of space exploration, but also for improving the quality of human life on Earth. The mission gained a lot of media reach on several nationwide newspapers and TV news, which served the purpose of letting people know this kind of research is doable by Colombians. Much of the contents generated during the mission will also be used to generate outreach activities, as well as academic production, contributing to the consolidation of a space sector within Colombia.

It is important to note how the crew bonded on a personal level, and there was a very good environment for work and for personal life. Knowing how to balance those two aspects will be key for the future of space exploration and long term missions.

 

EVA Summary

The crew executed a total of 8 EVAs during the 2 weeks period at the MDRS. While EVAs are a fundamental element for exploration, on future space missions they won’t be frequent, due to the risks they present for the safety of the crew. The main goal of the EVAs for our crew was to perform sampling for Geological and Biological prospection of sites. A total of 8 EVAs were performed, with a total duration of 24 hours.

 

Research results

A brief summary of the research results is presented. For more information, please contact the researchers. The projects description can be found in the “Mission Plan” document.

  1. Title: Evaluation of germination of greens under different light wavelengths.

Research team: Hermes Bolivar, Freddy Castañeda, David Mateus

Results

We don’t have results yet, Because, the materials for build the necessary structures arrive to the station late, the experiment stay in process and David will collect the results in the next days.

  1. Topic: Star tracker Positioning systems

Researcher: Hernan David Mateus Jimenez

During the simulation it was not possible to work in this project due to time, however David is going to continue working in this project during his internship at MDRS

  1. Title: Ethnography of MDRS

Researcher: Hernan David Mateus Jimenez, Pablo Cristancho

During the simulation David sent 3 Logbooks to Pablo Cristancho and they are going to be analyzed in Colombia

  1. Topic: Recycling & Space sustainability

Researcher: Hernan David Mateus Jimenez,

During the simulation David gathered a set of data of de solid garbage produced by crew 203, this is going to be analyzed after simulation

  1. Title: Photogrammetry parameters of some samples of the MDRS region.

Researchers: Liza Forero, Fabián Saavedra.

Results: Some outcrops and rock samples were taken in situ. All the images that where obtain are being processed with other satellite images to create DEM´s (Digital Elevation Models). Each model is a 3D recreation of the photographed landscape.

  1. Title: Physic and chemical parameters of some samples of the MDRS region and sample processing with geobiologic potential.

Researchers: Liza Forero, Yael Méndez.

Results: Some grids were made in different areas of the MDRS zone, for each grid three parameters were analysed, conductivity, pH and absorbance, the results of each parameter lecture are being analysed and processed statistically and are going to be compare with an analogue in Colombia.

Samples were collected in North Pinto Hills and Beige Moon region. These samples were characterized according to their physicochemical parameters, finding that, in these places alkalophilic microorganisms can be found, with a high availability of nutrients.

  1. Title: Evaluation of microbiome from surfaces samples at the MDRS

Research team: Yael Mendez, Hermes Bolivar, Oscar Ojeda

Results:

This project could not be completed. The temperature of the incubator was not stable due to generator failures and thermal shock occurred, which affected the bacterial cultures. It is expected that next crews can resume the experiment.

  1. Title: Design and construction of an equipment for measuring, register and monitor the variables necessary for the characterization of evapotranspiration in soilless crops with simulation of regolith of Mars.

Researcher: Freddy Castañeda

Results:

An unexpected failure in the controller made the equipment unusable for taking measurements, a spare controller was requested but it didn’t reach the simulation time.  The experiment will be developed on the campus of the National University of Colombia recreating the now known conditions of the Mars desert.

  1. Title: Evaluation of the germination of greens on analog Martian soil.

Researcher: Hermes Bolivar, Fredy Castañeda, David Mateus.

Results:

The project has been finished, we saw that the number of seeds   on the Martian soil with the potting mix is less than the control, this result, show us the difficult for culture with the Martian soil and require of more research.

Final Notes and Remarks

In general, the performance of the station was nominal. Apart from some issues with the diesel generator and a couple suit batteries, there were no anomalies. We consumed all the proteins provided, as well as most of the snacks. Water consumption was measured to be 530gal, plus the greenhab usage, which was enough for food, drink, and basic hygiene. Mission Support was profoundly helpful and was very responsive to reports and requests. We’d like to suggest the Mission Support mailing list to be updated from the beginning of the field season, so that crews will be aware of the situation.

 

For future crews:

Don’t over estimate the time for science you have on the station, keeping it up will be demanding.

Prepare your projects with time, find out what’s available at the station before arriving and plan accordingly.

Food is fundamental, don’t starve, you have enough food, and get some cooking skills. A fine plate of food can lift the crew’s spirit.

Read the handbook, it’s there for a reason…!

Mission Summary – Crew 202

Mars Desert Research Station
Mission Summary

Crew 202 – MartianMakers
Dec 28th, 2018 – Jan 12th, 2019

 

 

Crew Members:

Commander and Crew Astronomer: Dr. Cesare Guariniello

Executive Officer: Denys Bulikhov

Crew Engineer: Kasey Hilton

Health and Safety Officer and GreenHab Officer: Jake Qiu

Crew Geologist: Ellen Czaplinski

Crew Journalist: Alexandra Dukes

 

Acknowledgements:

The Crew of MDRS 202 would like to express their gratitude to all the people who made this mission possible: our deepest thanks to Dr. Robert Zubrin, President of the Mars Society; Dr. Shannon Rupert, MDRS Director and Program Manager, who made us feel warmly welcome at MDRS campus; Atila Meszaros, Assistant Director, who for the first time experienced being the only resident manager of MDRS, and performed greatly with our crew; Dr. Peter Detterline, Director of Observatories, who trained and assisted our Crew Astronomer before and during the mission; David Murray, GreenHab Team Lead; Michael Stoltz, The Mars Society Liaison, Media and Public Relations; the Mission Support CapCom who served during our rotation: Sylvain Burdot, Johanna Kollewyn, Andrew Foster, Justin Dingman, Bernard Dubb, Samuel Cadavid, and Makiah Eustice; Purdue MARS, which initiated the crew selection for this mission; all the departments and people at Purdue University who supported this mission; and all the unnamed people who work behind the scene to make this effort possible, and who gave us a chance to be an active part of the effort towards human exploration of Mars.

 

Mission description and outcome:

MDRS 202 “MartianMakers” is the second all-Purdue crew at MDRS. This mission had an ambitious plan, and it was greatly successful. All crewmembers performed to the highest standards and provided good work on their research projects, as well as support to projects of the other crewmembers. With a little help from meetings and information provided before the mission, the crew adapted to life at MDRS very quickly, and even when tiredness began creeping in, the morale was always high, as demonstrated by a healthy number of smiles and happy faces up to the very last day. As expected, we found out that patience and flexibility are the most helpful qualities in a simulated mission where the crew lives in close quarters for an extended period of time. The research projects that required Extra Vehicular Activities (EVA) provided enough data despite very cold days, and the fresh snow which accumulated twice during the rotation and melted down leaving muddy trails behind. The research described below touched many aspects of human exploration of Mars, ranging from geology, microbiology, astronomy, and potential use of waste to the psychological and social aspects of the mission. The crew was also involved in various outreach projects, which is an important objective of MDRS.

 

Figure 1. MDRS 202 Crew posing in front of the habitat with a “thank you” sign for the Mars Society. Left to right: Commander and Crew Astronomer Cesare Guariniello, Crew Journalist Alexandra Dukes, Crew Engineer Kasey Hilton, Health and Safety Officer and GreenHab Officer Jake Qiu, Executive Officer Denys Bulikhov, and Crew Geologist Ellen Czaplinski

As commander, I am extremely proud of this crew, which was capable to keep the highest level of fidelity and realism in the situation. The crew properly followed safety and research protocols, worked as a tightened group, and in the structured daily schedule was capable to mix long hours of research and exploration activities with personal and team-bonding time. The pace kept throughout the mission was adequate for the objectives proposed in the mission plan, but at the same time slow enough, as expected in a long-term Martian settlement. The crew began preparing their projects long before the mission, collected useful and interesting data during their time and MDRS, and has plans for use of the data after the completion of the mission, as well as ideas for laying foundations for continued collaboration of Purdue crews with the MDRS program and for supporting MDRS with products and manuals for future crews.

 

 

Summary of Extra Vehicular Activities (EVA)

After being trained in the use of rovers and in the safety protocols for EVA, the crew had twelve excursions during rotation 202, two of which being traditional short EVA to Marble Ritual. The EVA served four research projects: study of mineralogy and regime of sand dunes, stress levels and decision making, autonomy for crew EVA, and radiological mapping of MDRS. Due to snow in the first days and mud in the last days, the crew could not reach the end of Cactus Rd in the East side, and Skyline Rim in the West side, but explored various areas of interest in the Morrison Formation and Dakota Sandstone. The crew optimized the time on the field, limiting the driving time to 15-25% of the entire EVA duration.

Table 1. Summary of EVA, indicating Sol of execution, duration, distance covered, and time percentage spent in the field

 

Figure 2. Three-dimensional view of the EVA performed by MDRS 202 crew

 

Research Projects:

Project 1

Title: Fuzzy Logic Decision Making in support of autonomy for crew EVAs

Author: Cesare Guariniello

Description, activities, and results: The project compares decision-making based on a fuzzy-logic intelligent machine with decision-making by the crew when events occur during EVA. During the longest EVA, the Commander suggested potential events, including failed communications, rover failures, crew injury, unexpected environmental conditions, and asked the crew to describe what they would decide for the rest of the EVA in that situation, and why. For some events, the decision was unanimous (evaluate the criticality of the situation, then proceed), when the perceived risk was low, and the objective of the EVA were not even partially accomplished. Other events entered gray areas, in which the crew at times did not consider the potential risks to exceed the potential gain from continuing the EVA or moving to a secondary objective. In these cases, the decisions of the machine were more conservative.

Project 2

Title: Stress levels and decision making during Extravehicular Activity (EVA)

Author: Denys Bulikhov

Description, activities, and results: The project evaluates decision-making patterns at different level of stress, including calm conditions, after long EVA, and after the Cold Pressor test. This data will identify potential areas of danger due to misjudgment and faulty decision-making in conditions of stress. All planned data was collected for this experiment, and the first results have been evaluated. Due to a bug in the application used to analyze the data, final results will be available after the end of the mission, with an updated version of the application.

Project 3

Title: Study of microbial ecosystem in microgreens

Author: Jake Qiu

Description, activities, and results: The project studies the evolution of microbial ecosystems in microgreens treated with different types of water, to compare the community structure between different conditions and estimate the possibility that microbes introduced in the environment by astronauts develop any pathogenic strains. Multiple trays of microgreen were grown, and microbes were studied with a NASA DNA sequencer. Phenotypic properties were evaluated in-situ, while full results on microbial community require post-processing in laboratory that will be executed after the end of the mission.

Figure 3. MDRS 202 GreenHab Officer setting up microgreens for the experiment on microbial exosystems

Project 4

Title: Analysis of mineralogy and regime of sand dunes and fluvial processes

Author: Ellen Czaplinski

Description, activities, and results: many features in the MDRS area were studied during 10 of the 12 EVA, and sand samples were collected in various locations. The in-situ portion of the project was completed by collecting visible and near-infrared spectra of more than 90 geological samples in the area, mainly including clays (illite and montmorillonite) and gypsum. The work will proceed after the end of the mission by comparing samples collected in the field with samples taken in laboratory.

 

Figure 4. Crew Engineer Kasey Hilton points at a rock she just collected for crew geologist Ellen Czaplinski

Project 5

Title: Composting and recycling waste on Mars

Author: Kasey Hilton

Description, activities, and results: this project studied the waste produced at the habitat, to evaluate the nitrogen and carbon content. This is very important when planning to use the waste to create a compost pile, which would provide a way for waste to be reused and provide plants with nutrients. A healthy compost requires a 1:25 ratio of nitrogen-rich to carbon-rich waste. Human waste can be used to modify the ratio towards carbon-richer compost, therefore an anonymous journal of human waste production has been kept, in order to evaluate the amount of compost that could be produced. Due to the lack of carbon-rich waste and to the large amount of food, which is nitrogen-rich, the waste produced at the habitat resulted highly nitrogen-rich and would require human waste added to modify the ratio of nitrogen to carbon.

 

Project 6

Title: Classroom Outreach via asynchronous Q&A

Author: Alexandra Dukes

Description, activities, and results: Questions of interest about MDRS and living on Mars were prepared for the crew. Each crew member was videotaped answering the questions in a “73 questions” Vogue format, and the videos will be used for outreach after the end of the mission.

 

Project 7

Title: Messier objects for outreach

Author: Cesare Guariniello

Description, activities, and results: with the support of Dr. Peter Detterline and Dr. Shannon Rupert, the Crew Astronomer and Atila Meszaros helped improving the focus of the MDRS-WF telescope. In the months preceding the mission and during the mission itself, the Crew Astronomer captured and processed images of various deep-space objects, including M1, M31, M33, M42, M51, M78, IC405, the Rosette Nebula, the Horsehead Nebula, the Rosette Nebula, and comet C46P/Wirtanen. The images will be used for outreach and education.

Figure 5. M31 Andromeda Galaxy imaged with the MDRS-WF telescope

Project 8

Title: Radiological mapping of MDRS and surrounding areas

Author: Denys Bulikhov

Description, activities, and results: Addressing the problem of radiation on Mars, this project simulated a possible activity that astronaut will perform on the surface of Mars, and ambient radiation readings were collected in 32 different points around MDRS. The levels were between 10 μR/h around Cactus Rd and 30 μR/h around Kissing Camel Ridge. However, one location on the southern wall of Lith Canyon had a reading of 127 μR/h, possibly due to the presence of fossilized remains in the area. A map of MDRS with associated ambient radiation levels will be produced after the end of the mission.

 

Project 9

Title: Students outreach on projects towards Martian mission

Author: Alexandra Dukes

Description, activities, and results: The ongoing project is producing descriptions of the research performed by members of MDRS 202 aimed at different levels: K-6, 7-12, and college.

Project 10

Title: Photometry of faint objects

Author: Cesare Guariniello

Description, activities, and results: this project used the MDRS-14 telescope before the beginning of the mission, to evaluate the photometry of Pluto and Makemake. Due to weather conditions and some remaining problem with the centering of the telescope, preference went to imaging with the MDRS-WF telescope, and more photometry will be performed after the end of the mission.

Project 11

Title: MARSter Chef

Author: Alexandra Dukes

Description, activities, and results: the project showcases how the rehydrated food available at MDRS is used to prepare delicious breakfast meal

 

Mars Desert Research Station Crew 202

Crew 202 Mission Summary – January 11th

Mars Desert Research Station
Mission Summary

Crew 202 – MartianMakers
Dec 28th, 2018 – Jan 12th, 2019

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Denys Bulikhov
Crew Engineer: Kasey Hilton
Health and Safety Officer and GreenHab Officer: Jake Qiu
Crew Geologist: Ellen Czaplinski
Crew Journalist: Alexandra Dukes

See Mission Patch

Acknowledgements:
The Crew of MDRS 202 would like to express their gratitude to all the people who made this mission possible: our deepest thanks to Dr. Robert Zubrin, President of the Mars Society; Dr. Shannon Rupert, MDRS Director and Program Manager, who made us feel warmly welcome at MDRS campus; Atila Meszaros, Assistant Director, who for the first time experienced being the only resident manager of MDRS, and performed greatly with our crew; Dr. Peter Detterline, Director of Observatories, who trained and assisted our Crew Astronomer before and during the mission; David Murray, GreenHab Team Lead; Michael Stoltz, The Mars Society Liaison, Media and Public Relations; the Mission Support CapCom who served during our rotation: Sylvain Burdot, Johanna Kollewyn, Andrew Foster, Justin Dingman, Bernard Dubb, Samuel Cadavid, and Makiah Eustice; Purdue MARS, which initiated the crew selection for this mission; all the departments and people at Purdue University who supported this mission; and all the unnamed people who work behind the scene to make this effort possible, and who gave us a chance to be an active part of the effort towards human exploration of Mars.

Mission description and outcome:
MDRS 202 “MartianMakers” is the second all-Purdue crew at MDRS. This mission had an ambitious plan, and it was greatly successful. All crewmembers performed to the highest standards and provided good work on their research projects, as well as support to projects of the other crewmembers. With a little help from meetings and information provided before the mission, the crew adapted to life at MDRS very quickly, and even when tiredness began creeping in, the morale was always high, as demonstrated by a healthy number of smiles and happy faces up to the very last day. As expected, we found out that patience and flexibility are the most helpful qualities in a simulated mission where the crew lives in close quarters for an extended period of time. The research projects that required Extra Vehicular Activities (EVA) provided enough data despite very cold days, and the fresh snow which accumulated twice during the rotation and melted down leaving muddy trails behind. The research described below touched many aspects of human exploration of Mars, ranging from geology, microbiology, astronomy, and potential use of waste to the psychological and social aspects of the mission. The crew was also involved in various outreach projects, which is an important objective of MDRS.

As commander, I am extremely proud of this crew, which was capable to keep the highest level of fidelity and realism in the situation. The crew properly followed safety and research protocols, worked as a tightened group, and in the structured daily schedule was capable to mix long hours of research and exploration activities with personal and team-bonding time. The pace kept throughout the mission was adequate for the objectives proposed in the mission plan, but at the same time slow enough, as expected in a long-term Martian settlement. The crew began preparing their projects long before the mission, collected useful and interesting data during their time and MDRS, and has plans for use of the data after the completion of the mission, as well as ideas for laying foundations for continued collaboration of Purdue crews with the MDRS program and for supporting MDRS with products and manuals for future crews.

Picture 1: MDRS 202 Crew posing in front of the habitat with a "thank you" sign for the Mars Society. Left to right: Commander and Crew Astronomer Cesare Guariniello, Crew Journalist Alexandra Dukes, Crew Engineer Kasey Hilton, Health and Safety Officer and GreenHab Officer Jake Qiu, Executive Officer Denys Bulikhov, and Crew Geologist Ellen Czaplinski

Summary of Extra Vehicular Activities (EVA)
After being trained in the use of rovers and in the safety protocols for EVA, the crew had twelve excursions during rotation 202, two of which being traditional short EVA to Marble Ritual. The EVA served four research projects: study of mineralogy and regime of sand dunes, stress levels and decision making, autonomy for crew EVA, and radiological mapping of MDRS. Due to snow in the first days and mud in the last days, the crew could not reach the end of Cactus Rd in the East side, and Skyline Rim in the West side, but explored various areas of interest in the Morrison Formation and Dakota Sandstone. The crew optimized the time on the field, limiting the driving time to 15-25% of the entire EVA duration.

Table 1. Summary of EVA, indicating Sol of execution, duration, distance covered, and time percentage spent in the field

EVA 1 2 3 4 5 6 7 8 9 10 11 12 Total
Sol 2 2 4 5 6 7 8 9 10 11 12 13
Duration (h:mm) 0:36 0:47 2:43 1:54 2:58 2:10 1:45 3:10 2:26 2:47 1:46 1:35 24:37
Distance (miles) 1.0 1.0 6.2 3.5 6.3 4.9 4.7 6.3 10.5 9.5 3.0 1.2 58.1
% not driving 89% 88% 82% 89% 85% 75% 77% 83% 73% 79% 81% 100%

Picture 2: Figure 2. Three-dimensional view of the EVA performed by MDRS 202 crew

Research Projects:

1.
Title: Fuzzy Logic Decision Making in support of autonomy for crew EVAs
Author: Cesare Guariniello
Description, activities, and results: The project compares decision-making based on a fuzzy-logic intelligent machine with decision-making by the crew when events occur during EVA. During the longest EVA, the Commander suggested potential events, including failed communications, rover failures, crew injury, unexpected environmental conditions, and asked the crew to describe what they would decide for the rest of the EVA in that situation, and why. For some events, the decision was unanimous (evaluate the criticality of the situation, then proceed), when the perceived risk was low, and the objective of the EVA were not even partially accomplished. Other events entered gray areas, in which the crew at times did not consider the potential risks to exceed the potential gain from continuing the EVA or moving to a secondary objective. In these cases, the decisions of the machine were more conservative.

2.
Title: Stress levels and decision making during Extravehicular Activity (EVA)
Author: Denys Bulikhov
Description, activities, and results: The project evaluates decision-making patterns at different level of stress, including calm conditions, after long EVA, and after the Cold Pressor test. This data will identify potential areas of danger due to misjudgment and faulty decision-making in conditions of stress. All planned data was collected for this experiment, and the first results have been evaluated. Due to a bug in the application used to analyze the data, final results will be available after the end of the mission, with an updated version of the application.

3.
Title: Study of microbial ecosystem in microgreens
Author: Jake Qiu
Description, activities, and results: The project studies the evolution of microbial ecosystems in microgreens treated with different types of water, to compare the community structure between different conditions and estimate the possibility that microbes introduced in the environment by astronauts develop any pathogenic strains. Multiple trays of microgreen were grown, and microbes were studied with a NASA DNA sequencer. Phenotypic properties were evaluated in-situ, while full results on microbial community require post-processing in laboratory that will be executed after the end of the mission.

Picture 3: MDRS 202 GreenHab Officer setting up microgreens for the experiment on microbial exosystems

4.
Title: Analysis of mineralogy and regime of sand dunes and fluvial processes
Author: Ellen Czaplinski
Description, activities, and results: many features in the MDRS area were studied during 10 of the 12 EVA, and sand samples were collected in various locations. The in-situ portion of the project was completed by collecting visible and near-infrared spectra of more than 90 geological samples in the area, mainly including clays (illite and montmorillonite) and gypsum. The work will proceed after the end of the mission by comparing samples collected in the field with samples taken in laboratory.

Picture 4: Crew Engineer Kasey Hilton points at a rock she just collected for crew geologist Ellen Czaplinski

5.
Title: Composting and recycling waste on Mars
Author: Kasey Hilton
Description, activities, and results: this project studied the waste produced at the habitat, to evaluate the nitrogen and carbon content. This is very important when planning to use the waste to create a compost pile, which would provide a way for waste to be reused and provide plants with nutrients. A healthy compost requires a 1:25 ratio of nitrogen-rich to carbon-rich waste. Human waste can be used to modify the ratio towards carbon-richer compost, therefore an anonymous journal of human waste production has been kept, in order to evaluate the amount of compost that could be produced. Due to the lack of carbon-rich waste and to the large amount of food, which is nitrogen-rich, the waste produced at the habitat resulted highly nitrogen-rich and would require human waste added to modify the ratio of nitrogen to carbon.

6.
Title: Classroom Outreach via asynchronous Q&A
Author: Alexandra Dukes
Description, activities, and results: Questions of interest about MDRS and living on Mars were prepared for the crew. Each crew member was videotaped answering the questions in a “73 questions” Vogue format, and the videos will be used for outreach after the end of the mission.

7.
Title: Messier objects for outreach
Author: Cesare Guariniello
Description, activities, and results: with the support of Dr. Peter Detterline and Dr. Shannon Rupert, the Crew Astronomer and Atila Meszaros helped improving the focus of the MDRS-WF telescope. In the months preceding the mission and during the mission itself, the Crew Astronomer captured and processed images of various deep-space objects, including M1, M31, M33, M42, M51, M78, IC405, the Rosette Nebula, the Horsehead Nebula, the Rosette Nebula, and comet C46P/Wirtanen. The images will be used for outreach and education.

Picture 5: M31 Andromeda Galaxy imaged with the MDRS-WF telescope

8.
Title: Radiological mapping of MDRS and surrounding areas
Author: Denys Bulikhov
Description, activities, and results: Addressing the problem of radiation on Mars, this project simulated a possible activity that astronaut will perform on the surface of Mars, and ambient radiation readings were collected in 32 different points around MDRS. The levels were between 10 μR/h around Cactus Rd and 30 μR/h around Kissing Camel Ridge. However, one location on the southern wall of Lith Canyon had a reading of 127 μR/h, possibly due to the presence of fossilized remains in the area. A map of MDRS with associated ambient radiation levels will be produced after the end of the mission.

9.
Title: Students outreach on projects towards Martian mission
Author: Alexandra Dukes
Description, activities, and results: The ongoing project is producing descriptions of the research performed by members of MDRS 202 aimed at different levels: K-6, 7-12, and college.

10.
Title: Photometry of faint objects
Author: Cesare Guariniello
Description, activities, and results: this project used the MDRS-14 telescope before the beginning of the mission, to evaluate the photometry of Pluto and Makemake. Due to weather conditions and some remaining problem with the centering of the telescope, preference went to imaging with the MDRS-WF telescope, and more photometry will be performed after the end of the mission.

11.
Title: MARSter Chef
Author: Alexandra Dukes
Description, activities, and results: the project showcases how the rehydrated food available at MDRS is used to prepare delicious breakfast meal

Mars Desert Research Station Crew 202

Final Mission Summary – Crew 201

Mission Summary

Misión de Exploración – 1

Crew 201

Tania Robles – Commander

Juan Carlos Mariscal – Executive Officer

César Serrano – Crew Engineer

Federico Martínez – Crew Astronomer/Scientist

Genaro Grajeda – Health and Safety Officer / Journalist

Walter Calles – Greenhab Officer / Journalist

 

December 15th – 30th, 2018

Mission Plan:

 

MEx-1 is a Mexican initiative that seeks to encourage the interest of the general population, industry, academia and government of Mexico about the benefits of space exploration and its applications.

 

This through the creation of the first Mexican program of missions in MDRS conformed by a team of astronauts and a ground support on Earth. MEx-1 is a mission that had the previous support of an aerospace doctor and specialist psychologists to evaluate the physical and mental conditions of astronauts prior to the establishment of tasks and workloads of the missions.

 

The general objectives of Mex-1 are:

  • Integration of a national multidisciplinary team that provides necessary support to the astronaut’s activities that will be carried out before and after the mission.
  • Document and generate the necessary historical information to be able to organize easily later iterations of the mission.
  • Generate media impact necessary to attract and encourage the participation of children and youth in space activities in Mexico.
  • Encourage students and entrepreneurs to develop business activities focused on the creation and integration of projects that benefit and / or use space or high technology resources related to space exploration.

 

Crew 201 Projects:

 

Title: The Multidimensional Fatigue Symptom Inventory

Author(s): Betel Martinez, Genaro Grajeda

Objectives: To know the psychological state and mental fatigue of the astronauts through the daily filling of the mental fatigue questionnaire.

Results: The Crew has been doing daily tests to understand the effects of isolation, stress and heavy workloads on people but specifically what are the effects on Mexican nationals. This tests have been received by professional psychologists and will be analyzed during the next few months and give recommendations for future crews with Mexican nationals as well as an opportunity to test it with professionals doing work in isolation like remote ocean vessels and mining stations.

 

Title: Crew Wellness Experiment

Author(s): Carlos Salicrup, Genaro Grajeda

Objectives: Measure and document the crew’s weight, water consumption and pressure variation during the mission.

Results: The Crew has been doing daily measurements of weight, water consumption, nutrition, heart frequency and blood pressure. This experiment wants to further understand the effects of isolation, stress and heavy workloads on analogue astronauts for future missions as well as to properly prepare selected analogue astronauts on what pre-mission activities are to be done to complete missions successfully. Additional tests on dehydration after EVAs were done to understand the workload and exercise done by analogue astronauts during extended multihour multiactivity missions with space suits.

 

Title: Very Small Aperture Terminal (VSAT) Pointing

Author(s): Genaro Grajeda, Federico Martínez

Objectives: Point a VSAT with 3D printed tools

Results: The VSAT pointing experiment was unsuccessful due to logistic delays for the main component of the experiment. Nonetheless, the 3D printer was used to make 9, 10 and 11 cm wrenches that are standard for the nuts and bolts on an standard VSAT kit and can be left at the station for durability tests as well as strength tests that printed tools offer. The VSAT pointing team performed two EVAs to analyze locations to install the VSAT that could be used for connectivity to make a smart habitat as well as locations for possible microwaves with omnidirectional antennas that can serve the purpose of asset tracking and crew EVA safety.

 

Title:  3D Printing in space exploration

Author(s): Federico Martínez

Objectives: The main objective of using 3D printing is to provide us personalized tools for our VSAT pointing project and spare parts. This experiment will provide support on the construction of a rover prototype as well, and an analysis of the Hab will be done to use this technology to provide daily use supplies.

Results: The use of 3D printing it’s becoming something usual when we talk about manufacture and technology. Having this kind of technology on site gives us advantages as rapid prototyping, personalized tools, variety of materials and many others.

The main idea of using 3D printing was to make specialized tools for the VSAT project on MDRS a set of three tools were designed and printed likesome open end wrench of different dimensions (9mm, 10mm, 11mm) that took around eight hours to be finished. Also the design and printing of an adjustable wrench ready. However there were some issues with the weather and the behaviour of the 3D printer with the Martian weather conditions, plus the logistical difficulties of the VSAT system to arrive to MDRS. It made us took the decision to stop the printing of this parts and focus on using the material on making the rover with the preliminary designs.

The printing of 28 parts of the rover took about 50 hours. This time doesn´t include failed printed parts, software configuration and machine calibration.
At the beginning of mission we assemble, repaired and installed the 3D printer on the RAM. The malfunction of a temperature sensor gave us trouble so it was replaced, however the low temperature inside the RAM was making the parts warping on the corners. After several attends of printing and mechanical and software adjustments, the crew took the decision to move the printer to the low deck of the Hab. This gave us better results, reason why we have been able to print the tools and the 99% of the rover parts.

Due to the low temperatures during the last couple of days, it turned harder to continue printing with the cold weather and wind as main factors. These conditions are not the best conditions for this kind of amateur 3D printers.

We will continue working in these projects on Earth and as a main objective, we will make improves to the 3D printer to make it capable to print on tough weather conditions, starting with an enclosure to keep the heat, a stronger frame, and an extrusion system capable of reaching higher temperature.

 

Title:  Engaging space to the people

Author(s): Crew 201

Objectives: Generate audio visual content that will be published to increase the awareness of space sector and the interest of young students and professionals in space exploration from Latin America.

Results: All the material was recorded and will be under the editing process at the beginning of January. It consists in a series of interviews with the Crew members about their daily work at MDRS and personal objectives. It was directed and produced by the members of Crew 201.

 

Title:  Validation of electronics architecture and communication protocols for an exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Validate the function of electronic components in hostile (low) temperature conditions. Validate communication protocols for exploration vehicles in the Martian environment.

Results: Regarding the electronics architecture and communications protocols of the rover, due to the requirements of the long distances communications; we chose devices capable to transmit at least 1k data. The project consisted in a long distance command data transmission for the autonomous manipulation of the rover.

During the first days of the mission, we worked with the electronics to test the code of the data transmission. First, we started to set up the devices with the software, but it seemed that they had a malfunction or that the PCBs were not working properly. We tried with different devices, different laptops and different software, but the problem was still remaining. During several days of trying to communicate with the laptop, we started to think in alternative solutions. After testing carefully each electronic module and obtaining the same results, we decided to ask for another devices but, unfortunately they never arrived.  While we were waiting for the electronics components, we focused in the 3D printing of the Rover and tools.

 

Title:  Behaviour of Artificial Vision algorithms for Autonomous Navigation

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Test the quality of the images obtained by given cameras. Test the efficiency of AV algorithms and tools to identify samples of Martian rocks based on their colour and size. Test the efficiency of stereo vision to estimate distances using bi dimensional images

Results: During the simulation we were able to take the necessary pictures to test and train artificial vision algorithms for recognition of patterns of colour, form and size as well as distance and depth estimation using stereo vision.  To take the pictures, we used two high definition web cameras fixed and configured to take identical pictures with angle difference.  The pictures taken include several kinds of terrain such as flat, big-sized rocks or hills, small rocks (obstacles) and sand.  Although the algorithms could not be fully functional due to software configuration issues, the images will certainly be very useful for future work.

 

The software developed is part of the autonomous navigation system of a rover prototype that will explore and help in several tasks both in space and Earth.

 

Title:  Prototype and mechanical testing of Exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Prove the expected behave of the mechanical systems of the Rover.

Results: We designed a rover prototype for testing the behaviour of the mechanical parts in hostile surfaces. All the Rover design was completed in México and, during the mission, we printed a scaled version of it, due to the original prototype that we were supposed to use at MDRS never arrived because of logistics problems.

While printing it, we found that the low temperature inside the RAM was affecting in a bad mode the printing, so we moved the printer in the lower part inside the Hab. Later in the mission, we faced some problems with the printing again, such as the air flow inside the Hab, the place was not the flattest for printing, also, some sensors were not working as they must to, like the thermal sensors of the bed and extruder. This stopped us in the advance of the printing and assembling of the Rover.  However, the Rover was built in its 99% and we are still waiting for the last printing parts.

 

Title:  Martian Soil Analysis for usage on Greenhab

Author(s): Walter Calles

Objectives: Explore, collect and analyze multiple soil samples on the Martian soil on MDRS to test their capability for plants seeding and growing on the Greenhab. Up to 5 different soil samples will be mixed with different combinations of organic material to see which can be used as Greenhab ground.

Results: On two EVAs, 5 different soil samples were collected, categorized and used to test their capacity for growing plants. To get started, those samples were mixed with ground soil in small percentages and tested with three radish seeds. 3 of the 5 samples were tested in the following percentages: Type 1 soil sample in 10,20,30,40 and 50% mixes. Only 10, 20 and 30% showed results. 40 and 50 percent didn’t show any progress, probably for the very low concentration of soil sample/ ground used (234g). For types 2 and 3, only 10 and 20% mixes were tested.

Both showed results, but in a lower scale, compared to type 1. Next steps suggest a new round, using more organic ground (~800g as total). The next step as well should be the categorization and testing of types 4 and 5 of the Martian soil samples. The experiment ran through 8 sols. A separate and more elaborated experiment summary will be delivered to the next crew’s Greenhab officer to keep track and continue with these testings.

Mission Summary – December 28th

Mission Plan:

MEx-1 is a Mexican initiative that seeks to encourage the interest of the general population, industry, academia and government of Mexico about the benefits of space exploration and its applications.

This through the creation of the first Mexican program of missions in MDRS conformed by a team of astronauts and a ground support on Earth. MEx-1 is a mission that had the previous support of an aerospace doctor and specialist psychologists to evaluate the physical and mental conditions of astronauts prior to the establishment of tasks and workloads of the missions.

The general objectives of Mex-1 are:

· Integration of a national multidisciplinary team that provides necessary support to the astronaut’s activities that will be carried out before and after the mission.

· Document and generate the necessary historical information to be able to organize easily later iterations of the mission.

· Generate media impact necessary to attract and encourage the participation of children and youth in space activities in Mexico.

· Encourage students and entrepreneurs to develop business activities focused on the creation and integration of projects that benefit and / or use space or high technology resources related to space exploration.

Crew 201 Projects:

1.

Title: The Multidimensional Fatigue Symptom Inventory

Author(s): Betel Martinez, Genaro Grajeda

Objectives: To know the psychological state and mental fatigue of the astronauts through the daily filling of the mental fatigue questionnaire.

Results: The Crew has been doing daily tests to understand the effects of isolation, stress and heavy workloads on people but specifically what are the effects on Mexican nationals. This tests have been received by professional psychologists and will be analyzed during the next few months and give recommendations for future crews with Mexican nationals as well as an opportunity to test it with professionals doing work in isolation like remote ocean vessels and mining stations.

2.

Title: Crew Wellness Experiment

Author(s): Carlos Salicrup, Genaro Grajeda

Objectives: Measure and document the crew’s weight, water consumption and pressure variation during the mission.

Results: The Crew has been doing daily measurements of weight, water consumption, nutrition, heart frequency and blood pressure. This experiment wants to further understand the effects of isolation, stress and heavy workloads on analogue astronauts for future missions as well as to properly prepare selected analogue astronauts on what pre-mission activities are to be done to complete missions successfully. Additional tests on dehydration after EVAs were done to understand the workload and exercise done by analogue astronauts during extended multihour multiactivity missions with space suits.

3.

Title: Very Small Aperture Terminal (VSAT) Pointing

Author(s): Genaro Grajeda, Federico Martínez

Objectives: Point a VSAT with 3D printed tools

Results: The VSAT pointing experiment was unsuccessful due to logistic delays for the main component of the experiment. Nonetheless, the 3D printer was used to make 9, 10 and 11 cm wrenches that are standard for the nuts and bolts on an standard VSAT kit and can be left at the station for durability tests as well as strength tests that printed tools offer. The VSAT pointing team performed two EVAs to analyze locations to install the VSAT that could be used for connectivity to make a smart habitat as well as locations for possible microwaves with omnidirectional antennas that can serve the purpose of asset tracking and crew EVA safety.

4.

Title: 3D Printing in space exploration

Author(s): Federico Martínez

Objectives: The main objective of using 3D printing is to provide us personalized tools for our VSAT pointing project and spare parts. This experiment will provide support on the construction of a rover prototype as well, and an analysis of the Hab will be done to use this technology to provide daily use supplies.

Results: The use of 3D printing it’s becoming something usual when we talk about manufacture and technology. Having this kind of technology on site gives us advantages as rapid prototyping, personalized tools, variety of materials and many others.

The main idea of using 3D printing was to make specialized tools for the VSAT project on MDRS a set of three tools were designed and printed likesome open end wrench of different dimensions (9mm, 10mm, 11mm) that took around eight hours to be finished. Also the design and printing of an adjustable wrench ready. However there were some issues with the weather and the behaviour of the 3D printer with the Martian weather conditions, plus the logistical difficulties of the VSAT system to arrive to MDRS. It made us took the decision to stop the printing of this parts and focus on using the material on making the rover with the preliminary designs.

The printing of 28 parts of the rover took about 50 hours. This time doesn´t include failed printed parts, software configuration and machine calibration.
At the beginning of mission we assemble, repaired and installed the 3D printer on the RAM. The malfunction of a temperature sensor gave us trouble so it was replaced, however the low temperature inside the RAM was making the parts warping on the corners. After several attends of printing and mechanical and software adjustments, the crew took the decision to move the printer to the low deck of the Hab. This gave us better results, reason why we have been able to print the tools and the 99% of the rover parts.

Due to the low temperatures during the last couple of days, it turned harder to continue printing with the cold weather and wind as main factors. These conditions are not the best conditions for this kind of amateur 3D printers.

We will continue working in these projects on Earth and as a main objective, we will make improves to the 3D printer to make it capable to print on tough weather conditions, starting with an enclosure to keep the heat, a stronger frame, and an extrusion system capable of reaching higher temperature.

Title: Engaging space to the people

Author(s): Crew 201

Objectives: Generate audio visual content that will be published to increase the awareness of space sector and the interest of young students and professionals in space exploration from Latin America.

Results: All the material was recorded and will be under the editing process at the beginning of January. It consists in a series of interviews with the Crew members about their daily work at MDRS and personal objectives. It was directed and produced by the members of Crew 201.

5.

Title: Validation of electronics architecture and communication protocols for an exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Validate the function of electronic components in hostile (low) temperature conditions. Validate communication protocols for exploration vehicles in the Martian environment.

Results: Regarding the electronics architecture and communications protocols of the rover, due to the requirements of the long distances communications; we chose devices capable to transmit at least 1k data. The project consisted in a long distance command data transmission for the autonomous manipulation of the rover.

During the first days of the mission, we worked with the electronics to test the code of the data transmission. First, we started to set up the devices with the software, but it seemed that they had a malfunction or that the PCBs were not working properly. We tried with different devices, different laptops and different software, but the problem was still remaining. During several days of trying to communicate with the laptop, we started to think in alternative solutions. After testing carefully each electronic module and obtaining the same results, we decided to ask for another devices but, unfortunately they never arrived. While we were waiting for the electronics components, we focused in the 3D printing of the Rover and tools.

6.

Title: Behaviour of Artificial Vision algorithms for Autonomous Navigation

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Test the quality of the images obtained by given cameras. Test the efficiency of AV algorithms and tools to identify samples of Martian rocks based on their colour and size. Test the efficiency of stereo vision to estimate distances using bi dimensional images

Results: During the simulation we were able to take the necessary pictures to test and train artificial vision algorithms for recognition of patterns of colour, form and size as well as distance and depth estimation using stereo vision. To take the pictures, we used two high definition web cameras fixed and configured to take identical pictures with angle difference. The pictures taken include several kinds of terrain such as flat, big-sized rocks or hills, small rocks (obstacles) and sand. Although the algorithms could not be fully functional due to software configuration issues, the images will certainly be very useful for future work.

The software developed is part of the autonomous navigation system of a rover prototype that will explore and help in several tasks both in space and Earth.

7.

Title: Prototype and mechanical testing of Exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Prove the expected behave of the mechanical systems of the Rover.

Results: We designed a rover prototype for testing the behaviour of the mechanical parts in hostile surfaces. All the Rover design was completed in México and, during the mission, we printed a scaled version of it, due to the original prototype that we were supposed to use at MDRS never arrived because of logistics problems.

While printing it, we found that the low temperature inside the RAM was affecting in a bad mode the printing, so we moved the printer in the lower part inside the Hab. Later in the mission, we faced some problems with the printing again, such as the air flow inside the Hab, the place was not the flattest for printing, also, some sensors were not working as they must to, like the thermal sensors of the bed and extruder. This stopped us in the advance of the printing and assembling of the Rover. However, the Rover was built in its 99% and we are still waiting for the last printing parts.

8.

Title: Martian Soil Analysis for usage on Greenhab

Author(s): Walter Calles

Objectives: Explore, collect and analyze multiple soil samples on the Martian soil on MDRS to test their capability for plants seeding and growing on the Greenhab. Up to 5 different soil samples will be mixed with different combinations of organic material to see which can be used as Greenhab ground.

Results: On two EVAs, 5 different soil samples were collected, categorized and used to test their capacity for growing plants. To get started, those samples were mixed with ground soil in small percentages and tested with three radish seeds. 3 of the 5 samples were tested in the following percentages: Type 1 soil sample in 10,20,30,40 and 50% mixes. Only 10, 20 and 30% showed results. 40 and 50 percent didn’t show any progress, probably for the very low concentration of soil sample/ ground used (234g). For types 2 and 3, only 10 and 20% mixes were tested.

Both showed results, but in a lower scale, compared to type 1. Next steps suggest a new round, using more organic ground (~800g as total). The next step as well should be the categorization and testing of types 4 and 5 of the Martian soil samples. The experiment ran through 8 sols. A separate and more elaborated experiment summary will be delivered to the next crew’s Greenhab officer to keep track and continue with these testings.

Final Mission Summary – Crew 200

Mars Desert Research Station Mission Report

Crew 200 – Mars Society International Crew

Dec 1st- 16th, 2018

Crew Members:

Commander: Dr. Ilaria Cinelli

Executive Officer: Oakley Jennings-Fast

Astronomer: Andrew Foster

Geologist: Dr. Jun Huang

Engineer: Antoine Bocquier

GreenHab Officer: Makiah Nicole Eustice

Health and Safety Officer: Dr. Lindsay Rutter

Table des matières

Introduction 3

Nominal Mission Plan (1st – 9th December 2018) 3

Extended Mission Plan (9th – 16th December 2018) 15

3 Member Crew Observations & Risk Analysis 22

Observations 22

Hazard analysis 23

Suggestions and ideas for MDRS and the Mars Society 27

Introduction

Crew 200 Mission Plan is an international mixture of science work, education and outreach. The Mission

key values are:

  1. International
  2. Diversity
  3. Education

The initial mission duration for the whole crew is 1st to 9th December, however as some members are able to stay longer, an extension of the mission was proposed and approved. Thus, this has enabled to study how a reduced crew (3 members) can successfully extent a mission and adapt its crew dynamics after the whole crew is reduced (emergency leading to have part of the crew to come back to Earth, accident, loss of members, etc.)

The Nominal Mission Plan is firstly described and completed with its results, followed by the Extended Mission Plan. In addition, a section analyses our experience as a 3-member crew while the last section contains suggestions and ideas for MDRS and the Mars Society.

Nominal Mission Plan (1st – 9th December 2018)

Laid out here is a summary of the crew’s planned research projects while at the MDRS:

  1. Crew Projects
  • Mapping emotions (by Commander, I. Cinelli):

Introduction: Emotions and feelings are altered by the environment, and isolation has been

shown to impact human behaviours. Arts is used in this project to communicate how a person could experience endurance in isolation using colours.

Rationale: Mapping emotions in isolation for envisioning endurance

Methods: Since young age, I. Cinelli associates words and numbers to colours, that she sees

distributed in space with an order depending on their meaning. Emotions and feelings will be

mapped throughout the adaptation in isolation. Acrylic colours will be used to map emotions on

a flight-suits.

Results: The mapping too longer than expected. The painting is not completed because of time restrictions, as the flight-suit was pained in anywhere (front and back included). However, the flight-suit includes the main features of the design I had in my mind. The picture refer to a phase of the painting, it is not the final version.

  • Cement using Local Soil and Simulated Soil (Oakley Jennings-Fast Executive Officer)

Introduction: Objective is to test the strength of premix concrete (cement plus Earth soil as aggregate) and Portland cement plus local soil and Martian Regolith. Rationale: Important for understand building structures on Mars using available materials on the planet. Methods: Mix various ratios of cement and local soil, simulated soil and water and test the strength with known force until failure.

Results: Dropped a hammer of known weight from a known height until breakage. Clamped each brick at the midpoint with clamps. Premix concrete (with Earth soil and aggregate and cement) broke at the lowest force (from 2 inched height of the hammer). Local soil was used in various ratios with Portland Cement: 1:1 ratio, 2:1 ratio of Portland cement to local soil, 3:1 ratio of Portland Cement to local soil. As predicted, the brick with the highest ratio of Portland cement required the highest force to break. It appears there is not a linear relationship between force needed to break and ratio of soil. The 1:1 ratio of local soil and cement broke at a height of 10 inches. And the 2:1 and 3:1 ratio of cement and local soil required over 20 inches of height to break. More replicates need to be performed in the future and additional experiments using only local materials (such as clay and sand) and no cement. This would replicate more closely what would be done on Mars.

  • Search for Extremophiles: (by Lindsay Rutter, Health and Safety Officer)

Introduction: Understanding what microbes survive the Mars-like environment around the

MDRS can serve as a proxy to the type of microbes that may survive Mars itself. Identifying

sample microbes can be achieved with commercial-made microscopes, but can also be achieved

with homemade microscopes in the event that a more official microscope is not available.

Rationale: Detecting microbial life on Mars would be an incredible discovery that would answer a long-standing question from humankind about whether we are alone in the universe. Such findings would have major implications for adhering to planetary protection ideals, protecting the immune systems of space explorers, and understanding life in the universe from broader contexts.

Methods: We collected four soil samples (dark red, orange, grey, and brown) and one snow sample from nearby the Mars Desert Research Station (MDRS) during an extravehicular activity on December 5, 2018. We collected a fifth soil sample (purple) during an extravehicular activity on December 6, 2018.

We then examined the six samples in the ScienceDome of MDRS between December 5, 2018 and December 7, 2018 (Figure 1A). For each of the five soil samples, one part soil sample was diluted with nine parts distilled water. Each beaker containing the diluted soil sample was gently shaken and stirred (Figure 1B). A pipette was used to transfer one drop of each soil sample onto a microscope slide. The field was examined at three resolutions (40x, 100x, and 1000x). Photos were taken for each sample (Figure 2).

A homemade microscope was also made in the Repair and Maintenance (RAM) building of MDRS on December 6, 2018 (Figure 3A-D). The lens from two laser pointers were extracted using clamps and handsaws and were attached to an iPhone camera using Mounting Putty. Paper and plastic were used to cover a flashlight to serve as a proxy for microscope lighting. Magnification of the makeshift microscope was estimated using rulers and comparing to known resolution of microscope in ScienceDome.

Results: The only sample to show possible evidence of microbial life was Sample 4 (purple soil). The homemade microscope did not produce enough resolution for this study.

Conclusion: There is very tentative and preliminary evidence of microbial life in the purple soil sample from nearby the MDRS. The homemade microscope was unable to reasonably search the samples taken from nearby the MDRS for microbial life.

Discussion: Due to time limitations, each sample was observed five times (one drop each). We note that the purple soil sample only showed possible microbial life in two of the five samples, indicating substantial sample variability. In light of this, future work should observe a larger number of repetitions from each sample. The possible microbial life found in the purple soil samples will need to be investigated further alongside experienced microbiologists. The low magnification of the homemade microscope may be due to the lens in the laser pointers purchased for this project; it is possible that another laser pointer may have provided a lens that produced enough magnification for this project. It may also be possible that the flashlight within the homemade microscope did not provide enough light to penetrate the depth of the sample. Further investigations into these possibilities are future avenues for this line of work.

Figure 1: (A) Six samples from nearby the MDRS station. (B) Six samples after dilution.

Figure 2: Six samples under the microscope at 100x magnification.

  • Energy Exchanges: Modeling and measurement of the thermal exchanges of the Habitat. (by Antoine Bocquier, Crew Engineer)

Introduction: Modeling the energy behaviour of the Habitat is key to optimize the use of available resources. By building an energy model of the Habitat that can be validated by in site measurements, it would be possible to adapt it to a Martian environment.

Rationale: A Martian station will need to be a “smart building” enabling to monitor resources use and perform failure detection and recovery. In MDRS, it will be useful to have a better assessment of the thermal power dissipated compared to the one generated.

Methods:

1) Build a simplified energy model of the Habitat using the bond graph method

2) Take measurements via an infrared camera of the Habitat and find out its parameters to refine the model

3) Compare software simulations with measurements to validate the model

4) Adapt the model to a Martian environment

I have been very pleased to conduct this project which gave me the opportunity to better understand the station structure and power systems. In a first place I created a first simplified energy model of the Habitat, understand its physical behaviour and the station power chain (which I was also monitoring as Crew Engineer). During my first EVA (Wednesday), I used my infrared camera to acquire a first thermal map of the Habitat, experiencing constraints that will be to take into account on Mars (harder to use the camera, longer measurements than expected, variability of environmental conditions). From this data, I was able to find the different thermal areas in order to refine the model and better understand the building energy behaviour. On the other hand, I used the infrared the camera inside the Habitat to have an internal thermal map, while analysing the physical structure of the building (measuring the building layers, identifying the materials, etc.). I also performed two experiments to find the thermal conductivity of the wall, however my first analysis of the results let me think it will not be precise enough (I would need to heat a larger area or better use the weather conditions).

Eventually I was able to refine the energy model of the Habitat, including the identified thermal resistances and physical properties. I have simulation results which are physically valid, which is a good point given the complexity. Yet the comparison with my measures indicates that the model is not yet precise enough for me to go to the next step in order to include the power generation (solar panels, generator, propane heater and devices consumption).

Although satisfied by the approach taken and the lessons learnt, especially via the experimental approach in a Martian environment (necessity to anticipate more and take into account safety/environmental constraints), I have been limited by some points. The environmental conditions vary, which can have an impact on the measurements: the snowy weather prevented to perform more daily measures or in special conditions (e.g at dawn) and the weather station data cannot be accessed. I also realised than the Crew Engineer daily tasks and the crew common tasks need more time than expected. Besides, the media visits in a short time were interesting but I had to dedicate more time expected. Finally, I recognize the topic is a complex and ambitious one, with much unknown parameters which need rigorous time and effort.

An interesting point is that the project coincided with other crew members projects, from the power generation study, automatization of the station resources to Martian construction. This reveals how much we can contribute together to everyone’s projects, bringing added value to larger projects.

Although the mission is coming to an end, I intend to expand the project to have a fully operational model that can be valuable for further projects (especially at MDRS). Staying with a part of the crew for a prolongation week, I will make the model more precise by analysing each energetic component of the Hab with new measurements. Once validated, including power generation systems, I could improve the model with convection/radiation phenomena, for which I measured some of the key data. Finally, having gathered data about the Martian environment, I could adapt it and complete fully the project. Some infrared measurements performed in EVA:

  • GreenHab Outreach (By Makiah Eustice, Greenhab Officer):

Introduction: Grow experiment at same time as a school in Canada

Method: Plant salad seed, check height each day

Rationale: Outreach to promote Mars exploration and green livinac

  • Mars VR (By Makiah Eustice, Greenhab Officer)

Introduction: Develop and film walkthroughs of training scenarios

Rationale: Crew 197 didn,t complete these tasks.

Method: Decide on training scenarios, practice, and film (annotate)

Results: Learned steps of setting up and down the Solar Observatory, doing an Engineering Check, and EVA Prep. These steps will be used to make the training scenarios with first person video. I gathered more ideas from the Mars VR team.

Completed: Hab tour

Partially Completed: Engineering Check, Solar Observatory

Needed: GreenHab operations, Soil Collection and Analysis, EVA Prep, Rover start up

  • MDRS Digitization (By Makiah Eustice, Greenhab Officer):

Introduction: Understand sensors and electronic systems an find ways to implement “Smart Hab” system

Rationale: Mars would have smart systems that are connected, controlled, and archived for real time decision making

Method: Track all systems (water, power, environmental, telemetry) and find ways to improve

Results:

  • Tracked existing systems for power, water, and environment.
  • Gathered ideas for sensor/telemetry/intranet system that would centralize data to Hab
  • Made sample display of future HAL system for centralized data
  • Prototype code that extracts data from reports and imports in Excel

List of needed devices/ questions

Conclusion

  • Previous operations have very loose understanding of power and water consumption beyond what is put in the Engineering Report. Also, most of the information is wasted and inaccessible for modelling and analysis.
  • Smart monitoring systems could be implemented with off-the-shelf devices
  • Extraction of data from sensors or even reports would not be hard to program and implement
  • Schools Outreach (By Andrew Foster, Crew Astronomer)

Introduction: Inspire the scientist and engineers of the future through a schools outreach project

Rationale: The colonization of Mars will involve people of many nationalities and backgrounds working together towards a common goal. Education and outreach is the foundation for this great project.

Method:

Engage school and community in Western Qatar with a variety of exciting projects:

1. School

1.1 Year 8 HAB design – HAB design questionnaire “Ask The Experts” (from PHSE lessons), to be carried out @ MDRS. Questionnaire results to be presented in PHSE lesson late December.

1.2 Year 7 Science club – Introduced science project list. Follow up questions to be sent before mission start.

1.3 Primary Yr 6: Light project, two experiments:

i. Measure and compare Naked Eye Limiting Magnitude at Dukhan and MDRS, using star chart for Cygnus.

ii. Construct a Cooking Oil Differential Photometer, measure and compare sunlight transmission at Dukhan and MDRS.

1.4 Primary (Yr 3-6) Question List – Compilation of all questions from classes

1.5 Oryx award students (yr 12): Climate change project- Assess energy supply and usage at MDRS, use as input for a sustainable energy project.

1.6 Outreach: Maintain blog site, send at least daily updates for all projects. (text / photo / video) during the mission.

Results:

1.1 Year 8 HAB design Questionnaire – Objective met: Two group discussions carried out during mission. All questions discussed and writted feedback compiled, to be presented to Year Group on return to the school in PHSE lesson late December.

1.2 Year 7 Science club – Objective met – follow up science questions answered by group, to be presented on return from Mission.

1.3 Primary Yr 6: Light project, two experiments:

i. Measure and compare Naked Eye Limiting Magnitude: – Objective met: NELM at station 5.9, using Cygnus constellation as reference. School students to compare with local sky conditions on return from mission.

ii. Construct a Cooking Oil Differential Photometer, measure and compare sunlight transmission at Dukhan and MDRS. – Objective not yet met (cloudy conditions), awaiting gap in weather (sunlight) to carry out experiment.

1.4 Primary (Yr 3-6) Question List – Compilation of all questions from classes – Objective met – all questions answered and will be presented to school students on return from Mission.

1.5 Oryx award students (yr 12): Climate change project- Assess energy supply and usage at MDRS, use as input for a sustainable energy project. – Objective not yet met (ongoing), still required to share energy use results with crew members.

1.6 Outreach: Maintain blog site, send at least daily updates for all projects. (text / photo / video) during the mission. – Objective met.

2. Scouts

(Dukhan Troupe 33101) – Mission logo design competition complete. 2 x science experiments:

i. Biology / Greenhab food growth rate comparison “Cress Race” comparing GreenHab to local growing conditions.

ii. Human factors / space suit / EVA impact on heart rate using fitness monitor & app.)

Results:

i. Biology / Greenhab food growth rate comparison. Objective met: Watercress planted & growth rate measured over course of mission (average growth rate 1cm per day). Results to be presented to Scout Troupe, and second half growth comparison experiment to be carried out locally.

ii. Human factors / space suit heart rate – Objective met: Measured heart rate response in preparation for EVA, during EVA, return to airlock and removing equipment. Carried out comparison measurement, brisk walking at constant pace 1 km (around solar observatory). Results to be presented to Scout Troupe 33101 on return from Mission.

 

  • Mission Astronomy (By Andrew Foster, Crew Astronomer)

Introduction: Carry out a mixed Astronomy program consisting of science measurements and astrophotography. Take some beautiful images and share them with the community.

Rationale: Utilise the great astronomy facilities at MDRS, demonstrate the capability of the MDRS observatories by contributing to the science community and delivering some beautiful astrophotography as a means to engage the public.

Method:

i. Science / Astrophotography – Differential Photometry w/ American Association of Variable Star Observers

ii. Cometary Coma Morphology imaging (Planetary Science Institute campaign)

iii. Wide field astrophotography campaign.

iv. Solar prominence time lapse imaging.

Results:

i. Science / Astrophotography – Differential Photometry w/ American Association of Variable Star Observers: Objective partially met: Images of two variable stars acquired with MDRS-14 (AG Peg / RW Aur). Image processing and submission of photometry data to be carried out (post processing) after return from Mission.

ii. Cometary Coma Morphology imaging (Planetary Science Institute campaign): Objective partially met: Cometary coma imaging captured with MDRS-14, image post processing and data submission to be carried out after return from Mission.

iii. Wide field astrophotography campaign. – Objective partially met: Images obtained for M45 (processed / submitted), 46P/Wirtanen image acquisition ongoing with MDRS-WF. Further images to be submitted to Skynet by end mission, post processing and submission to MDRS reporting to be carried out after return from Mission.

iv. Solar prominence time lapse imaging. – Objective not met, daytime cloud cover for duration of mission. Visual observation of Sun carried out during short breaks in cloud during Mission. May be possible to carry out solar imaging last day before return from Mission.

Additional Results:

Imaging of Quasar 3C 273 w/ MDRS-14, post processing to be carried out on return from Mission.

Night sky astrophotography – Milky way above HAB, and light painting photography exercise.

  • Results: Drone application in geological mapping, EVA planning and crew member rescue (By Dr. Jun Huang, Crew Geologist)
  1. Completed mapping the adjacent region of the Hab. Build a 3 dimensional model of the Hab to provide assistance to the energy exchange modelling.
  2. Completed mapping mesas south east of the Hab. The digital elevation model and orthomosaic of this region will be completed afterwards due to very limited computing resources. This centimetre resolution DEM and orthomosaic will be helpful for future geological mapping and EVA planning.

    1. Completed a crew rescue scenario with drone. The HabCom will keep track of the locations of EVA crew members by asking them to report their locations (GPS points). If anything emergency happens, the HabCom can fly a drone to the crew’s location and its adjacent region to search for the crew members. The drone application for crew search and rescue will be extremely helpful in winter time when equipped by a thermal camera.

Extended Mission Plan (9th – 16th December 2018)

Makiah Eustice, Lindsay Rutter and Antoine Bocquier stayed for an extended mission. They simulated how to deal with a drastic crew reduction that could be cause by an emergency situation (crew members having to get back to Earth or another Martian base, accident and loss, etc.). They investigated how to readapt themselves to have still working crew dynamics but also ensure to maintain the station working and science to be performed. They also studied how to readapt MDRS procedures to this situation, so as to ensure safety and possibilities to work as a reduced crew (questioning how small a crew can actually be?).

The projects that have been studied are the following:

  • EVA with 3 crew members (by Lindsay, Makiah, Antoine):


Introduction:
situations on Mars where 3 crew members would be left may happen. They would need to be able to perform EVA to run the base, explore and perform their mission. Thus, we will investigate how to perform such EVA, having 2 members in EVA, 1 in the Hab as HabCom and the MDRS Director as potential backup (simulating a station AI for example).


Rationale:
It is needed to investigate how to adapt normal procedures to a reduced crew, ensuring safety.


Methods:

Perform EVA for 3 days to assess the radio coverage from the Hab, in order to define a safety perimeter where scientific EVA could be performed as usual. Perform both a walking EVA close to the Hab and map out locations that allow for radio communication between EVA crew and HabCom, and driving EVA to map further regions. One EVA member would drive the rover, while the other EVA member would provide HabCom every sixty seconds with a sequential location test number (“Testing location 1”, “Testing location 2”, etc) and would write down the corresponding GPS coordinates for that location test number. The HabCom member will respond with “Roger that” each time they hear a location test number, and will record a list of the location test numbers they heard and associate each one with a standardized signal strength and readability score (https://en.wikipedia.org/wiki/Signal_strength_and_readability_report).
The maximum time for an EVA will be two hours due to potential increased risks of a reduced crew EVA. The HabCom member will rotate each day. Our tentative daily plan would be as follows:

  • Monday (December 10): Walking EVA to Phobos Peak
  • Tuesday (December 11): Driving EVA south to Robert’s Rock Garden and north to intersection with Galileo Road
  • Wednesday (December 12): Walking EVA to Hab Ridge
  • Thursday (December 13): Pushing south past Robert’s Rock Garden or pushing north past intersection with Galileo Road.
  • Friday (December 14): Pushing south past Robert’s Rock Garden or pushing north past intersection with Galileo Road


Results

This project was successfully performed. We proceeded iteratively, day by day, by proposing an EVA protocol to apply, collecting data and feedback in order to improve the procedures.

Thus, we performed a series of 2hrs walking and driving EVAs from Robert’s Rock Garden, to Phobos Peak, Galileo Road and Reservoir Dam.

We defined clear responsibilities and communication between the HabCom and the EVA members to ensure efficiency in our radio coverage campaign but also to deal with loss of signal. Performing radio checks every minute, completed by GPS coordinates transmitted every 5mn, we were able to safely localize the crew even when contact was loss (after 5mn without, the crew had to come to a previous safe point). In addition, we mapped the quality of the radio coverage with the Habitat, from both sides.

We used Excel to merge GPS data (acquired via PhysicsToolBox), time and radio quality data.

Triangles are hand-acquired data (1 color per EVA) while points are automatically GPS-acquired data.

We believed assessing radio connectivity and strength could be of use for future crews to continue and possibly be used to assess location suitability for radio relay. As a result, we used R statistical software to develop a brief application where users can upload a CSV file containing coordinates (latitude and longitude) and overlay these as points onto a map of the MDRS and its surroundings. We used the ggmap R package as a wrapper that queries Google Maps. We also used the ggplot2 R package, which uses the grammar of graphics to overlay points onto the map. We published our brief application on shinyapps.io; the full website can be accessed at https://evamapsmdrs.shinyapps.io/mdrsmaps/.

Users can send issues or feature requests at https://github.com/lrutter/MDRSMaps/issues.

We hope future MDRS crew members can use this application to quickly and efficiently map out their EVA locations and metainformation. They can overlay their recorded GPS coordinates as points to determine where they traveled on their EVA. They can possibly tailor (change the color and size) of these overlaid points to represent metainformation, such as radio connectivity score for given points.

Not only we demonstrated the possibility to perform safely EVAs with a reduced crew and a rigorous approach (much more demanding that previous EVAs), but we also acquired and processed data that to procure future crews with a tool that could be useful for their EVA planning.

We also analysed some sites that could be suitable for settling a radio relay in order to expand the radio coverage from the Hab: Phobos Peak (likely accessible by north side) and a mesa close to Reservoir Dam.

Next steps to be taken:

    • Mapping the quality signal on the geographic map
    • Expanding the study area
    • Settling radio relays
  • Station Power Study (by Makiah, Antoine, Lindsay):

Introduction: merging and prolongation of our previous projects on the building thermal model and the power consumption study in the station (cf further).

Rationale: having a power model of the station will help to monitoring and manage it better, which is needed on Mars.

Methods: we will follow the path proposed in the sections below, to improve the thermal model with accurate data and measurements, as well as a deeper study of the energy uses in the Hab.

Results:

While Makiah led the study of the Station power study, from listing every system consuming power with its related power (estimated or indicated), Antoine improved his energy modelling of the Habitat.

We helped each other to better understand our problematics and exchange our findings, Makiah’s power study being an input for Antoine’s model.

The model (still under work) is described at macro level under:

Each box describes a submodel of a component, an exchange, etc. that is described with analytical equations and empirical data (Habitat geometry, configuration, materials, power consumption…).

Infrared measurements of the internal/external temperatures of the building were acquired during the mission to refine the model (e.g defining thermal areas and singularities), and above all to assess it. A first qualitative comparison with the simulation enables to evaluate the physical trends (e.g which part of the building is losing the most power, etc.), while a more qualitative is still to be completely performed for refining some data (e.g conductivity, convection).

(Figures: external, internal measurements and

wall thermal conductivity experiment)

The first simulation describes the temperature evolution and heat exchanges of the Habitat, in case no heating is performed. Although physically correct, the quantitative results are not yet precise enough as they will need to take more phenomena into account (e.g solar radiation which heats the Habitat).

I will continue refining the model, while adding the power inputs (electric power, heating, etc.) and the thermostat control. Once done, the next step will be adapting this model to a Martian environment. This model could be in the long term integrated as a programme of a Martian smart building, in correlation with the digitalization of the base (as proposed for the MDRS by Makiah, below).

  • Digitalization of the Station (by Makiah):


Introduction:

The MDRS has the potential to optimize systems that would improve the operations for future crew. Understand sensors and electronic systems and find ways to implement “Smart Hab” system and efficient transfer of information for mission support and future crew.

Rationale:

A Mars habitat would have smart systems that are connected for real time monitoring and decision making, easy communication to mission support, and anomaly prediction.

Method:

1) Track current systems (water, power, environmental, telemetry, internet) of MDRS habitat.

2) Create system requirements/recommendations for habitat sensors.

3) Create system requirements for habitat intranet and Hab systems display

4) Create sample website format for efficient display of crew reports and MDRS projects.

5) Recommendations for new capabilities for HAL (Habitat Activity Lexicon):

  • Make an intranet centralized at the Hab that allows sensor data to be displayed and archived, and allow crew members to share and store files.
  • Have a report sending program that sends reports to mission control through a portal that only connects to internet to send/receive mission support messages
  • Have automated report generation from sensor data.

Results:

The investigator was able to isolate almost all power systems. The MDRS habitat is powered by 3 solar panel sections and diesel generator at night. Both feed into a battery, which charges the MDRS. Power sinks, such as lights and appliances, were tracked by their rated wattages, except for heating systems that also use propane. The power management system is complex and not entirely understood, but the power generation of the solar panels and the net power of the batteries can be displayed, but it can only be accessed in the Science Dome.

Water for the Hab (main living building) comes from a 550 gallon tank outside, which is pumped to a intermediary tank on the un the upper floor. Rate of flow for sinks and the shower and estimated used were recorded. There are no sensor to monitor exact water level and rate of flow; daily level is estimated through visual inspection. Water for the Greenhab (Greenhouse) comes from a separate tank with unknown capacity and no sensors.

Temperature and Humidity sensors are in almost every building, however, they are not connected to any system. Each building has a carbon monoxide and smoke detector.

The habitat receives 500 MB of data for wifi each day. To check data level, crew must connect to the internet and open a webpage.

Communication with mission support is done over personal email, sending text files and pictures of daily activity at the end of the day.

After learning about these systems, the investigator determined the most important systems for real-time monitoring and decision making. Power generation, diesel level, propane level, battery charge, water levels, temperature and power usage of each building. The most important systems for tracking over time are power (energy use) and water. Other important inputs for the crew are knowing if the diesel generator is on and if the remote observatory is open. A sample display of information that will be available in the Hab was started during the nominal mission. Since the Mars Society is redeveloping the HAL (Hab Activity Lexicon), the findings of this projects can used for the developers to establish.

The information from mission support reports is in a standardized format that can be easily read and extracted from a program. Until sensor system are installed, data can be centralized and displayed from extracted information from reports and exported to excel or an html format in python or R. The display of MDRS reports on the MDRS website can be geared towards archiving data, instead of copying and pasting reports as a post. This will be developed during the extended mission.

Conclusion:

Previous operations have very loose understanding of power and water consumption beyond what is put in the Operations Report. Also, most of the information is wasted and inaccessible for modelling and analysis for future crew. Smart monitoring systems could be implemented with off-the-shelf devices that would not need modification to building infrastructure, but would effectively improve crew awareness of their systems. Extraction of data from sensors or reports would not be hard to program and implement.

Sample HAL display

  • Outreach & Education (All):


Introduction:
promote the activities performed at the station, reaching out in particular to children


Rationale:
inspire the public and in particular new generations to space exploration, analog missions and science


Method:
daily updates on our mission blog, direct exchanges with French middle school, social media coverage

Results:

We continued feeding our blog and sharing our experience, which will be continued with local media (e.g French media). We were also recorded for the Behind the Scene of a super bowl advertising.

3 Member Crew Observations & Risk Analysis

This section gathers some of our feedback on being a 3-member crew, rearranging a new crew dynamic being seven before. We kept our roles while having a more participative leadership style, with no hierarchy.

Observations

Negative changes:

  • Ratio of time used for housekeeping is increased (cooking, report writing, cleaning, etc.)
  • Less expertise in diverse fields (for instance, we did not know how to keep track of observatory issues as crew astronomer left)

Neutral changes:

  • Work becomes more collaborative where all three of us worked on each project together.
  • Spend more time as a whole time, one deeper discussion at any given time.
  • More socialization efforts needed
  • More conscious of people’s activities, safety, morale.
  • More alert about where the other members are and do.
  • Listen to more music now since it is quieter.
  • More resting after lunch, whereas with the seven-member crew, we all quickly returned to projects.
  • Closer to a flat sharing, daily tasks (e.g cooking) is done all together.

Positive changes:

  • Less noise at night when we are sleeping due to less traffic.
  • We get to know each other more individually (e.g we discovered we had similar vision and humor);
  • Lots of discussion during breakfast.
  • More positive interactions with mission support.
  • More aware of who is doing what reports (easier organization), we are always more aware of the other reports content.
  • More dedicated to creative and expressive journalist reports.

Hazard analysis

Severity Classes:

Catastrophic – Injury or damage that would require emergency services
Critical – Major Injury, damage, or hazard that would require a break in sim
Marginal – May cause minor occupational illness, delay or property damage.
Negligible – probably would not affect personnel safety or health, but may violate specific criteria or affect work

Probability Codes:

  1. Likely to occur immediately.
  2. Probably will occur in time
  3. May occur in time.
  4. Unlikely to occur.

Risk Assessment Code (RAC)

  A B C D
I 1 1 2 3
II 1 2 3 4
II 2 3 4 5
IV 3 4 5 6

RAC 1-2: Considered imminent danger and require immediate attention.

RAC 3: Risk needs to be actively mitigated by crew.

RAC 4-6: Non-serious but risk will be mitigated.

General Operations

Operations and Hazard Potential Normal RAC 3 Crew 3 crew Countermeasures Normal Disposition 3 Crew Disposition
Equipment RAC
Crew Electrical Shock Power shorts, 3 3 Turn of power systems, II/C I/D
Crew Hypothermia Long work in Science Dome, RAM, or Solar Observatory 5 4 Get member to a warm place in the Hab. Place under thermal blanket and give a Walkie Talkie. III/D III/C
Crew Thermal Burn Touching hot surfaces in the kitchen or Science Dome 4 4 Run over cold water and alert another crew member. If severe, alert crew to retreave first aid kit and access need for emergency services. III/C III/C
Crew Isolation Limited interaction in day, seperated buildings 5 3 Discuss with crew members openly about discomforts and feelings of loneliness. Schedule time in the day to spend socializing and talking about projects progress IV/C III/B
Severe Hab Fire Kitchen Fire, Electrical Fire 3 3 Alerted Crew will alert everyone in Hab and communicate through Comms. There should be a fire extinguisher in every building. Call Emergency services and evacuate the building. I/D I/D
Fire in other building Building Dependant 3 3 Alerted Crew will alert everyone in Hab and communicate through Comms. I/D I/D
Loss of Power No Solar power, unfunctional or empty generator 3 3 Moniter SOC level throughout day, delegate to other members. Alert of lowering SOC or no power generation. II/C II/C
No water refill Pipes freeze over, huge pipe leak 5 5 Make sure to keep loft tank above 6 gallons to IV/C IV/C
Depletion of Food Poor meal management, food spoiling 3 4 Return to replensih food II/C II/D
Depletion of Water Pooor water management 3 4 Return to town to refill water. Moniter water level and daily usage through engineering checks II/C II/D

EVA Risk Analysis

Operations and Hazard Potential Normal RAC 3 Crew 3 Crew Countermeasures Normal Disposition 3 Crew Disposition
Equipment RAC
EVA Hypothermia Cold weather, limited time to heat up, wind from drving 4 3 Carry extra pair of gloves and heating pads in cold weather. Do not let membe with hypothermic syptoms drive. End the EVA II/D I/D
EVA Overheating Hot Weather, ventilation failure, too any layers 4 3 Prevent overexertion by not doing more than what is planeed in the EVA, do not rush to complete an EVA. Ensure Backpack is working before leaving. End the EVA II/D I/D
EVA Unconsciosness Fall from high place, medical condition, 3 3 If at any point a member is feeling ill, the crew should end EVA. Crew must be capable of carrying or dragging a crew member. Conscience crewmember takes person to safe location. Crew member breaks sim and calls emergency services as soon as possible I/D I/D
EVA Open wound Fall from high place, sharp rock 4 3 Take First Aid Kit before EVA . Crewmember takes injured crew to safe location. Crew member break sim and calls emergency services if possible II/D I/D
HabCom Tiredness Lack of sleep, overexterd with activities 3 2 Day before planned EVA, HabCom seets markers, reminders to prevent mistakes. Have set alerts for to go off during EVA III/B II/B
HabCom Unconsciosness Lack of sleep, medical condition, fall down stairs 4 3 EVA team confirms comms by going to last point of signal. If no response, end EVA and alert emergency services II/D I/D
EVA Rover Breakdown Lack of battery charge, engine malfunction 4 3 Make sure rovers are charged to 100%. Avoid driving in cold weather. Turn around as soon as Rover reaches 60%. If rover breaks down, communicate to CapCom and begin walking back to the Hab. III/C II/C
Loss of Comms Signal Geological obstruction 5 4 Repeaters along driving routes would allow unblocked signal.Turn around if there is no contact for more than 2 minutes, go to place of last contact. IV/C III/C
Walkie Talkie dies Low battery charge 4 3 All Walkie Talkies will be fully charged for EVA. Each crew must have atleast one extra Walkie Talkie. III/C II/C
Hab Fire Kitchen appliance, electrical spark 4 3 HabCom does not cook or have kitchen appliances on during the EVA. Unnecesary lights should be turned off. II/D I/D
Fire in other building Electrical Spark 4 3 HabCom occasionally looks out of windows to moniter other buildings. HabCom will not have music playing, which may block out a fire alarm II/D I/D

Suggestions and ideas for MDRS and the Mars Society

  • Have a project-based approach for crews, with a regular monitoring/feedback on the projects development during the mission (science/research reports).
  • Have 1-2 weeks with the same CapCom to develop more relations and exchanges, so the CapCo is able to follow a crew and their project.
  • Have more interactions between CapCom and the crew, e.g the CapCom could propose scenarios where the crew would have to get to an area of interest (add new parameters to the mission but should not be seen too much as a constraint).
  • Remote science/innovation teams that could unify better the research done at MDRS, create a convenient database for building upon previous projects, advice new projects and ensure a continuity that will benefit the station development. Another point could be the development of the station, as it would happen on Mars once we get to the current architecture. We would need to explore more, settling relays for example, but also define maps (geological, radio, etc.). The innovation team could bridge the gap between individual projects and the station roadmap.

Lastly, they could also propose thesis projects to students that could benefit from the acquired data at MDRS (e.g human studies).

  • For the development of the station, allocate different bricks/projects between groups such as national chapters or university groups (both collaborative and independent enough for not depending too much on others).

To contact us:

Dr. IllariaCinelli, i_cinelli@yahoo.it
Oakley Jennings-Fast, oakley.jenningsfast@gmail.com

Makiah Eustice, mckaynicole@tamu.edu
Dr. Jun Huang, junhuang@cug.edu.cn
Dr. Lindsay Rutter, lindsayannerutter@gmail.com
Andrew Foster, afoster2001@gmail.com
Antoine Bocquier, ant.bocquier@gmail.com

G:\12082018 The Station this morning.jpg

Crew 197 – Final Mission Summary

MDRS Crew 197 Mission Summary
VR CrowdExplorers
Mission Dates: October 21-26, 2018

Commander: Dr. Susan Ip-Jewell
Executive Officer: James L. Burk
Health & Safety Officer: Sacha Greer
Crew Engineer: James M. Ehrhart
Crew VR Scientist: Shannon Norrell
Crew Journalist: Marge Lipton
Director, MDRS / GreenHab Officer: Dr. Shannon Rupert
Crew Spacesuit Engineer: Max Boyce
Crew Spacesuit Engineer: Robert McBrayer

 

Crew 197 grew out of the successful May 2018 Kickstarter campaign for the MarsVR Program Phase 1.  The Mars Society ran a successful crowdsourced fundraising campaign which included offering paid seats at the MDRS as a reward level for the first time.  Two key supporters of the MarsVR Kickstarter purchased seats, and were offered slots on this crew.  The Program Manager and Director of Engineering for MarsVR organized the mission logistics and the overall crew activities.  Other additions to the crew included our Commander, Crew Journalist and two members of the NorCal chapter who had just delivered the upgraded and refitted analog spacesuits to the MDRS for the new field season. This was not a science-focused mission — rather it was a VR and spacesuit engineering focused mission, but we approached it in the same way.

Back row (left to right): Robert McBrayer, Shannon Norrell, James Burk, Max Boyce.

Front row (left to right): Marge Lipton, Susan Ip-Jewell, James Ehrhart, Shannon Rupert, Sacha Greer.

Crew 197 successfully ran our sim focused on VR location scouting for MarsVR Phase 2, and testing / feedback of the recently refurbished analog space suits.  Our mission focused on gathering important data for both of these projects.  A secondary but important objective was to capture high quality photo, video, 360, and drone footage of the MDRS and crews on EVA.  This footage will be used for promotional purposes by the Mars Society.

Our team was comprised mostly of rookies.  Only Dr. Ip-Jewell and Dr. Rupert had prior experience in sim at the MDRS.  As a result, we struggled to learn all of the ins-and-outs of running a sim, going on EVA, and closely following all of the program rules.  Towards the end of our rotation, we felt we hit stride and were able to accomplish several advanced activities with a minimum of mistakes.  Our team gelled very well and our culture as a team was an important part of our time at the MDRS.  We all share a passion for space and for helping the Mars analog research program, and that helped us to bond quickly and assist each other well with tasks outside our immediate area of expertise.

Crew 197 arrived at the MDRS just after a major weather front had moved through the area, and the terrain was still recovering.  It had been quite muddy prior to our rotation and also during the afternoon of Sol 1, there was another rainstorm which drenched the area.  As a result, we were not able to go on EVAs until Sol 3.  Our original plan was for a 72 hour sim, stretching from the evening of Sol 1 through the evening of Sol 4.  Because of the poor terrain and other factors, we ended up running the sim from the morning of Sol 2 through the morning of Sol 5.

 

Overview of Team Goals

  • Create a research whitepaper for using VR to train analog simulation participants.
  • Pilot out MDRS Training Scenarios and script/enact new scenarios.
  • Update interior/exterior scans for MarsVR future releases.
  • Capture video & 360 footage for future promotional activities.
  • Prepare the station for beginning of field season.
  • [Added during rotation] Scout out MarsVR Phase 2 EVA terrain locations.
  • [Added during rotation] Pilot out and gather feedback on refurbished analog spacesuits.

 

Summary of Activities

Sol 0

5 of us arrived in Grand Junction and spend a couple hours searching for Susan’s luggage (her luggage was on a different bus than her), then we acquired a refrigerator for the Hab and successfully mounted it along with supplies and luggage to the roof of our rental Nissan Pathfinder using a complex and well-engineered system of bungees and nylon rope.  We felt this was our first Martian engineering challenge that we successfully overcame with teamwork and a “can-do” attitude.

 

Sol 1

We repaired the tunnels, mopped the floors, moved and organized equipment to prepare for our sim.  Two of us also drove the Hab car to a remote location for repairs.  Then we conducted an extensive training session/discussion with Dr. Rupert.  Also, Robert McBrayer installed padding on the new Hab stairs (which had pointy metal features) to help our bare feet!

 

Sol 2

We started the day with yoga and tai chi (something that became a morning tradition for our short crew rotation), then we went into Sim and talked about what we all hoped to get out of our mission.  We did a suit training session where we all tried on the suits but due to the weather did not get to go out on our planned initial EVA to Pooh’s Corner.  We also did a CPR exercise led by Susan Ip-Jewell where we all tried out a CPR technique.

 

Sol 3

Our first increment of the Pooh’s Corner EVA was achieved quickly by James B., Max, Shannon N., and Jim E.  Because we had over 45 mins left, we decided to take out a couple rovers to scout the first VR location, but quickly learned the importance of filing EVA plans in advance and to “Think like a Martian, Act like a Martian” by not taking on additional unnecessary risk.  Our afternoon 2nd increment of Pooh’s Corner with the remaining crew was successful and Max gathered feedback from everybody on the suits and their experiences.

 

Sol 4

This was by far the most productive day of the sim.  We went on two long EVAs, scouting the trail to Candor Chasma and Lith Canyon/Burpee.  We learned a lot about GPS coordinates and how to take readings from devices, but also the differences between GPS decimal, hours/mins/secs, and the UTM NAD27 CONUS coordinates that are used at MDRS.  We also learned about the rovers and their gears and how fast the batteries are draining when they are not in the correct gear!

 

Sol 5

We extended our sim a half day to accomplish an additional EVA to Candor Chasma/The Summerville.  We acquired a large amount of photos, videos, and 360 footage there.  Afterwards we ended sim and prepared the Hab for the next crew.

 

Evaluation of Results of Team Goals

  1. Create a research whitepaper for using VR to train analog simulation participants.

Not Achieved. We were not able to work on this at all during the rotation.  However, we did gather lots of knowledge and information about how MDRS crew members are typically trained, and we will be doing follow up work to finalize the Phase 1 training scenarios as part of the final release of Phase 1, after the public Beta.

 

  1. Pilot out MDRS Training Scenarios and script/enact new scenarios.

Partially Achieved. We successful articulated the entire spacesuit donning/duffing procedures and the airlock procedures, which are currently being implemented in the MarsVR Phase 1 codebase.  Additional conversations and enumeration of the steps of training procedures for the GreenHab, Kitchen, and other Phase 1 scenarios still need to be accomplished.

 

  1. Update interior/exterior scans for MarsVR future releases.

Not Achieved. Because the IKEA cabinetry was not yet installed prior to our rotation, we were not able to accomplish any of the updated interior scans we intended.  As a result, we did not arrange to have the LIDAR unit delivered during Sol 2, as was the original plan.  In addition, the tunnels were not fully repaired prior to or during our rotation, so we were unable to rescan them.  Because of the weather and other factors, we were not able to go on a scouting mission (in sim or out of sim) with Dr. Rupert to acquire scans of dinosaur fossils or any other notable landmarks.

 

  1. Capture video & 360 footage for future promotional activities.

Achieved. Our crew acquired an extensive set of photos, videos, 360 panoramas, 360 video, and drone-based overflight videos of the MDRS and the surrounding terrain.  James Burk, Shannon Norrell, Jim Ehrhart, Sacha Greer, Marge Lipton, and Robert McBrayer all contributed high quality assets to our crew’s library of these, which are in the process of being uploaded to Dropbox and put into use by the Mars Society’s Public Relations staff.

 

  1. Prepare the station for beginning of field season.

Partially Achieved.  Our crew helped with: Hab cleanup; water acquisition and transport; Hab car repairs; acquisition, transport, and installation of a new upper deck refrigerator; repairing and covering of the tunnels; installation and testing of the HAL system to mitigate the low bandwidth environment; testing and minor repairs to the analog spacesuits and their chargers; and testing out all Hab equipment.  We were not able to complete the tunnel repairs but we did drive in new stakes and cover/zip-tie most existing tunnels.  We offered to test & validate some of the damaged batteries in the Science Dome but it was decided not to save any of those.

 

  1. [Added during rotation] Scout out MarsVR Phase 2 EVA terrain locations.

Achieved. Because we were unable to perform interior scans, Burk and Norrell decided to focus their main efforts on scouting EVA locations for future terrain scans during Phase 2 of MarsVR.  Working with Dr. Rupert, we identified several interesting regions surrounding the MDRS such as Candor Chasma, the Summerville, Lith Canyon, and Barainca Butte that we scouted and acquired imagery of, both during in-sim EVAs and out of sim.

 

  1. [Added during rotation] Pilot out and gather feedback on refurbished analog spacesuits.

Achieved.  All crew members had an opportunity to go on EVA at least once, and to try at least one of the suit designs.  Several crew members did multiple EVAs and tried multiple suit configurations.  Feedback from all crew members was gathered by Max Boyce and important data on the suits was gathered by Robert McBrayer.  All of this will be provided to the NorCal chapter for future suit upgrades and redesigns.

 

CONCLUSION

We did not achieve our original objectives of the mission, but we felt we did accomplish a lot by successfully running a 72 hour sim with no significant problems (ie, nobody “died”, we never had to break sim, and we successfully maintained all the Hab equipment.).  In addition, we gathered important data for the VR location scouting and usage and feedback of the refurbished analog spacesuits.

Crew 197 had a positive experience at the MDRS which we will take with us for the rest of our lives.  We’d like to thank our families and the Mars Society for making this mission possible.

In gratitude,

Crew 197

 

 

Copyright © The Mars Society. All rights reserved. | Main Site