Mission Plan – January 1st

Crew 272 – Purdue Redusters
Crew Commander: Kshitij Mall (India/USA)
Executive Officer/Chief Scientist: Ariel Black (Canada/USA)
Crew Engineer: Mason Kuhn (USA)
Crew Geologist: Adriana Brown (USA)
Health and Safety Officer: Megan Rush (USA)
Crew Journalist: Kenneth Pritchard (USA)
Green Hab Officer: Madelyn Whitaker (USA)

MDRS Crew 272 is a multidisciplinary group of engineers and scientists hailing from the cradle of astronauts, Purdue University, who are all passionate about Mars exploration. The crew’s priority will be to advance the state-of-the-art research in different fields of current interest pertaining to Martian missions including communications, search and rescue missions using drones, additive manufacturing, plant growth on Mars, and human factors. Below is a detailed summary of projects during the mission.

Title: Radio Direction Finding for Communication on Mars
Crew Member: Kshitij Mall
Objectives: The main objective is to expand upon the research conducted by Dr. Justin Mansell during Crew 186 rotation and improve upon the transmitter-receiver system to have better communication at Mars between astronauts on EVAs and their habitat. Additional intent is to use the existing MDRS HAM, if possible, to improve the communication at Mars.
Description: This project aims at looking at the improved transmission system comprising two Microfox 15 transmitters and Yagi Uda antenna receiver system. Idea is to place transmitters at two different spots, one at the hab and another at another safe location to help identify the roundabout latitude and longitude of a particular location using Yagi Uda antenna
Rationale: Mars doesn’t have a magnetic field for compass to work and won’t have a GPS system right away. For communication on Mars we’ll have to look at other options.
EVAs Required: One EVA to place the transmitter and then test the new two transmitter communication.

Title: Paleoclimate Reconstruction of the Near-MDRS Environment
Crew Member: Adriana Brown
Objectives: Field observation and sampling of inverted paleochannels, analysis of paleoflow indicators, and interpretation of changes in depositional environments near Kissing Camel Ridge and Candor Chasma.
Description: This project aims to begin a paleoclimate reconstruction of the environment near MDRS, with a specific focus on changing depositional environments and ancient fluvial processes and how these are reflected in the stratigraphy.
Rationale: Understanding ancient fluvial processes is integral to better understanding the climatic and habitability history of Mars. Many features near MDRS, especially inverted paleochannels, such as those proposed by Clarke and Stoker (2011), are excellent Martian analogs that can provide important information through sedimentary stratigraphy and structures.
EVAs Required: At least one to Candor Chasma and to Kissing Camel Ridge.

Title: Navigation, Scouting, and Search & Rescue Using a Drone
Crew Member: Mason Kuhn
Objectives: The navigational objective is to explore areas of interest and routes to them for safe passage on foot, by a rover, or both. The scouting objective is to find new areas of interest for the geologist and any other crew member who is looking for a specific area, formation, or other items. The objective of search and rescue will be to compare the time taken to locate a ‘lost’ astronaut using the drone’s technology and on foot.
Description: Navigational EVA’s will be conducted as needed and upon request by other crew members who are looking for an aerial view of the path they will take. Media will be collected using the drone camera and shared with the crew members. Scouting EVA’s will be conducted also as needed, and it is expected to scout for different formations for geology areas of interest. This will be done to investigate other areas that might not be planned to visit. While navigation and scouting are used more to help other crew members, S&R will be the main focus of this research with quantifiable data. Time trials will be conducted 2+ times (as time allows) and compared in order to prove which method of S&R is more efficient.
Rationale: Astronauts on Mars will experience dust and windstorms which could pose a risk to their lives, no matter whether they are out of the HAB or ‘safely’ inside of it. There are other possible weather-related risks, or an astronaut could possibly forget their way back to the HAB. In any of these scenarios and likely some other scenarios, search and rescue will be required to save the astronaut’s life.
EVAs Required: Minimum 2 S&R EVAs to collect data, Minimum 1 Navigational EVA (more if needed), Minimum 1 Scouting EVA (more if needed)

Title: The Effectiveness of 3D Printing in a Mars Analog Environment
Crew Member: Megan Rush
Objectives: Test to see if plastic 3D printed tools work just as well as metal tools in a remote environment where it can be hard to plan for events that may require the use of these tools.
Description: A 3D printer was brought to MDRS to print models of rock hammers, shovels, wrenches, screwdrivers, and other tools. These tools will be brought on a geological EVA and used in the field to see how well the plastic performs its intended job.
Rationale: It is hard to plan ahead for events in a remote environment. If a hammer on Mars breaks, and if there are no extras, then astronauts would have to wait a long time for a resupply, which is wasted time. Using a 3D printer in this environment would allow for unlimited extras at a lower cost and shorter time.
EVAs Required: At least one in conjunction with geological EVAs.

Title: Human Adaptation to the Mars Desert Research Station Environment
Crew Member: Arly Black
Objectives: Assess how humans adapt physically and mentally to confined, isolated, and extreme environments, and assess whether air quality in the hab and spacesuits can be correlated to astronaut performance.
Description: Research involves daily touch-based, computer administered cognitive performance tests, evaluating spatial orientation, vigilance, and mental workload. Additional research will study the physiology of participants before, after, and throughout the mission via a smart tracker FitBit device worn around the wrist. Participants will also be required to fill out daily personal survey about their perceived mood, health, sleep, workload, and crewmember conflicts to see how the mission is affecting perceived mental and physical states.
Rationale: Stressors such as high workload, sleep restriction, circadian misalignment, team dynamics, confinement, isolation, and extreme environments can threaten the ability of astronauts to sustain high levels of cognitive performance over prolonged periods of time. There are few data points about the physical and mental strain astronauts experience on real long-term space exploration missions. As the conditions analog crew members will face replicate those of off-world environments, this is a key study from which to gather information to inform future real-life missions.
EVAs Required: None

Title: Analysis of Plant Efficiency, Yield, Microbial Diversity with Application of Astrobiome Fertilization Cocktails in Daikon Radish
Crew Member: Madelyn Whitaker
Objectives: Validate main claims of Astrobiome performance in Martian analog, analyze photosynthetic efficiency of samples, effects of wilting on shelf life, gain data on plant performance from analog participants
Description: Test effects of applied concentration gradient on physical characteristics of Daikon radish (1) by applying recommended Astrobiome dose at a 2^n scale. Visually analyze effects of harvest, refrigeration on samples with and without fertilization (2). Gain data, crew testimony of performance of plants (3). Samples at the root, shoot, as well as the substrate, will be frozen in RNA-Later for transcriptomics and analysis.
Rationale: Astrobiome is a prospective fertilizer for use in closed environment agriculture for future lunar and Martian mission. This study aims to validate and quantify the claims of product performance in terms of increased yield, quality, and other characteristics on Daikon radish. Additional introduction of contamination into the experimental design allows for simulation of bacterial presence in closed inhabitation, and further analysis of the bacterial community in these plant systems can provide information on root and bacterial relationships in these systems. It would be beneficial how the microbiome interacts with the plant root system and contributes to overall growth of a model plant other than that with which it was tested; microgreens are often less intensive and more nutrient dense.
EVAs Required: None

Title: Smart Scheduling and Objective Prioritization on a Martian Mission
Crew Member: Kenny Pritchard
Objectives: Autonomously prioritize, schedule, and accomplish crew tasks. Respond to distractions with minimal disruption to the schedule. Qualify the implicit challenges of accomplishing science objectives among the habitat responsibilities and environmental hazards of Martian missions.
Description: This project is effectively a case study of our ability to complete objectives during our rotation. The understanding we gain could inform decisions related to scheduling and smart autonomous planning in future missions to MDRS or other Martian habs.
Rationale: While a wealth of knowledge and experience regarding crew scheduling has been developed on ongoing space missions, future Martian missions will face new challenges. The increased communication delay alone has the potential to cause activity interruptions to a mission where every minute counts. Martian crews will not have immediate access to the indispensable advice of Mission Control — they will need to operate with a degree of independence previously untested.
EVAs Required: None

Copyright © The Mars Society. All rights reserved. | Main Site