GreenHab Report – December 25th

GreenHab Officer: Riya Raj
Environmental Control: Heater on, fan off, door closed.
Average Temperatures:
Sol 0:
Avg Temp – 12:16pm (92.8 °F)
Relative Humidity – 10%
Avg Temp: 10:03pm (71.6 °F)
Relative Humidity – 13%
Sol 1:
Avg Temp – 2:38pm (89.2 °F)
Relative Humidity – 10%
Avg Temp: 7:45pm (69.6 °F)
Relative Humidity – 14%
Hour of supplemental light: 10pm-2am (4 hours)
Daily water usage for crops:
Sol 0 – 2.05 gallons
Sol 1 – 2.1 gallons
Water in Blue Tank: (200 gallon capacity): 195.85 gallons
Times of watering for crops:
Sol 0 – 2pm
Sol 1 – 3:40 pm
Changes to crops: Fixed cucumber plants, replanted the brocolli/radish plants in bigger pots. Also harvested lettuce, basil, arugula, cilantro, and parsley!
Narrative:
Sol 0: Went in the greenhouse at about 3pm and watered all plants using a total of 1 gallon and 4 liters. I was able to aerate the soils of the tomato plants. The greenhouse was VERY warm with a temperature at 93 degrees Fahrenheit and there was only 10% humidity! Optimal humidity should be close to 40%-60% for temperate plants that are growing vegetables. After watering, I turned on the fan for 15 minutes to reduce the temperature to 80 degrees Fahrenheit. I was able to put sticks in the cucumber plants to help them stand up and grow better with the space. The humidity level also increased to 13%. For today, the only plants we harvested was the basil and lettuce. We used the basil for the quick Jambalaya we made for lunch while the rest of the crew was out fixing the car rentals and we used lettuce (18 grams) for the black bean burgers at dinner. After dinner, I was able to go back into the greenhouse at 10pm and check on the rest of the plants once again. The temperature was 71 degrees Fahrenheit with 10% humidity.
Sol 1: I went to the greenhouse today at 2:38pm and noted a temperature of 89 degrees Fahrenheit at 10% humidity. After watering with about 2.1 gallons of water, the humidity levels went up to 17%. I used up most of the time replanting the radish and broccoli plants. Especially for the broccoli and radish, the pots were becoming small for the roots, so I put them in a bigger pot to aerate the soil and make it comfy! At about 3:40pm, I harvested about 95 grams of kale for the pasta salad that we made for lunch! After lunch, I noticed that there was no spinach planted in the greenhouse, so I used the seeds I brought to set up a new pot! I put about 2-3 seeds in the 8 holes that I made. After that, I rearranged and properly fertilized the carrot plants with the MiracleGro Plant Food (1½ tablespoon) and a sprinkle of Jobes Organic Fast Start Fertilizer.
Harvest:
Sol 0:
Lettuce: 18 grams
Sol 1:
Kale: 95 grams
Parsley: 4 grams
Arugula: 12 grams
Support/supplies needed: Need humidifier in greenhouse??

HSO Pre-Mission Checklist – December 24th

Submitted by: Gabriel Skowronek

Crew: 289

Date: 12/24/2023

Part 1: Using the attached Safety Equipment Inventory, locate, test and confirm operation of all safety equipment. List any equipment not found and/or missing:

All equipment found other than the nightlight in the lower deck of the HAB.

Part 2: Locate and confirm the emergency escape routes in the Hab are functional and clear:

  1. Stairs (Functional and Clear)

  2. Emergency window (Functional and Clear)

  3. Commander’s window (Functional and Clear)

Part Three:

Inventory First Aid kit and note what needs to be refilled:

Hab Lower Deck:

  • Isopropyl alcohol (~4 quarts)

  • Electronic blood pressure monitor

  • Pulse oximeter

  • Non-contact thermometer

  • 25 facemasks

  • Cotton swabs

  • ~30 pouches of ibuprofen tablets

  • Triangular bandages

  • Thermal blanket

  • Burn relief cream

  • Band-aids

  • Dramamine

  • Medical tape

  • Gauze pads

  • Bandages

  • Nitrile gloves

Science Dome

  • Triangular bandages

  • Scissors

  • Nitrile gloves

  • Bandages

  • Thermal blanket

  • Sterile Pad

  • Alcohol prep pads

Note any safety issues: N/A

Note any health/environmental issues: N/A

Note any missing or recommended health and safety supplies: N/A

Safety Equipment Inventory 2022-2023

HAB Upper deck

HAB Lower deck

RAM

GreenHab

ScienceDome

Rovers

CO monitor

Yes

Yes

Yes

Yes

Yes

Escape ladder

Yes

Eyewash

Yes

Fire blanket

Yes

Yes

Yes

Fire extinguisher

Yes

Yes

Yes

Yes

Yes

First Aid

Yes

Yes

Intercom

Yes

Yes

Yes

Yes

Nightlight

Not found

Yes

Propane alarm

Yes

Yes

Radios (Channels 10 and 22)

Yes

Yes

Yes

Yes

Yes

Smoke alarm

Yes

Yes

Yes

Yes

Yes

Tow rope

Yes

Mission Plan – December 24th

Mars Desert Research Station
Mission Plan

Crew 289 – Deimos
Dec 25th, 2023 – Jan 6th, 2023

Crew Members:
Commander: Adriana Brown
Executive Officer and Crew Journalist: Sara Paule
Crew Geologist: Eshaana Aurora
Crew Engineer: Nathan Bitner
Health and Safety Officer and Crew Astronomer: Gabriel Skowronek
Green Hab Officer and Crew Biologist: Riya Raj
Crew Scientist: Aditya Arjun Anibha
Fxr8h_AsLJ3cocgHdqGQdt3KVlfq29VGUBlxWtdxYFfwiegvT7ux_ArP5KrBYgl8fbOA9GPaxMHo4-KnflzMwk8Jmbgrw8uQNXdmlgvLpe8I5r2e6XISA1hEk8-Vmi-iSwffgdE_Iscpuy-N7_XgzQ
Mission Plan:
The twin “Phobos” (288) and “Deimos” (289) missions are the sixth and seventh all-Purdue crew at MDRS. The enthusiasm and interest raised by the previous experiences of Purdue students and alumni at the station, the numerous high-quality research projects carried on at MDRS, as well as Purdue’s honored tradition in the field of space exploration, allowed us the amazing opportunity to complete two back-to-back rotations. Crew 289’s projects span engineering, astronomy, geology, biology, and human factors fields.

The main objectives of the Deimos analog Martian mission are:
Performing research in the fields of geology, engineering, human factors, astronomy, on Mars.
Experimenting with personnel at Purdue, providing a simulated mission control center to coordinate and support research and operations (including delay in communication, to simulate Earth-Mars distance).
Continuing the fruitful collaboration of Purdue crews with the MDRS program.
Following the mission, supporting MDRS with useful results for future crews.

Crew Projects:

Title: Remote Station Monitoring
Author: Nathan Bitner
Objectives: Demonstrate usefulness of supplying on-site crew and mission control with real time habitat data
Description: This project entails the creation of 10 separate sensor modules. Five of these measure air quality data from the various simulation buildings, and 5 measure the status of the various doors and airlocks on the station. Each of these modules send both manual and automatic updates to an Adafruit monitoring dashboard.
Rationale: In real Mars missions essential life support and other systems would be monitored closely by both crew and mission control. This project allows for the creation of a remote monitoring system that more closely resembles that setup.
EVAs: None

Title: Recording Dust Levels in the HAB
Author(s): Gabriel Skowronek
Objectives: Qualitatively determine the dust levels before and after cleaning procedures
Description: Areas and surfaces in both the upper and lower decks of the HAB will be swabbed using cotton swabs. Then using a handheld magnifier, a qualitative description of the observed dust will be made, which will include details like relative amounts and the type of contaminants (i.e. fibers, dirt/particulates). This will be done at least once a day throughout different locations to see if the amounts of dust vary throughout the crew rotation and where buildup occurs the most. Furthermore, swabbing will be done before and after cleaning procedures to see the effectiveness of cleaning methods.
Rationale: Mars’ surface poses serious risk to human health due to the Martian dust, made up of extremely fine particles. Minimizing the presence of dust in living quarters is a necessary step to reduce dependence on Earth’s supplies and medical interventions, especially given the potential infrequency of resupply missions and limited availability of supplies. This project prioritizes safeguarding the fundamental and most fragile aspect of Mars missions: the health and wellbeing of astronauts.
EVAs: None

Title: Astronomy on Mars
Author(s): Gabriel Skowronek
Objectives: Determine the period of variation for SW Tauri, a Cepheid variable. Furthermore, it will be helpful to make impressive pictures of the Crab and Orion nebulae.
Description: Using the RCOS-16 telescope to conduct photometry, intensity measurements will be made over a two-week period to construct a light-curve of SW Tauri. To conduct astrophotography, the MDRS-WF will be used to capture the Crab and Orion nebulae. To process the images, Astro ImageJ and Adobe Photoshop will be used.
Rationale: Making astronomical measurements of Cepheid variables, such as SW Tauri, prove useful to the field of cosmology due their usefulness in determining cosmological distances. Furthermore, the astrophotography will be used in outreach to show what is capable of being done at MDRS and to inspire others to pursue astronomy at MDRS and in general.
EVAs: None

Title: Comparison of Self-selection Traits versus Skill Utilization by Mars Colonists
Author(s): Sara Paule
Objectives: Examine the skills (e.g., flexibility, leadership, communication, problem-solving, domestic skills, etc.) most commonly used by “colonists” in their day-to-day activities at the Mars Desert Research Station (MDRS) versus their ratings of importance pre- and post-mission.
Description: This study will cross-compare daily usage of skills to those common in crew member volunteers and, post-mission will ask crew members to then rate the importance of skill necessity for success as a “colonist.” Pre-mission surveys have already been completed by the crew. During mission, at the end of each day, crew members will complete a brief 10-minute paper survey on which skills they utilized in their day-to-day activities at the Mars Desert Research Station (MDRS). As time allows, paper survey results will be manually transferred to electronic coding; however, this step can readily be completed post-mission.
Rationale: Space exploration and colonization missions will require their crews to possess a variety of skills to optimize the chances for success. Organizations selecting individuals for such missions look for certain traits within individuals and attempt to diverse across the crew; yet, there are no published rubrics for selection criteria.

Title: Establishing Best Practices in Mission Reporting from Prior Crew Reports
Author(s): Sara Paule
Objective 1: Establish the average word length of the various report styles.
Objective 2: Examine whether crew members are most often referenced by surname/family name, given name, or both.
Objective 3: Determine common subject matters within reports, such as references to meals, sleep, showering, etc.
Description: Examine past MDRS reports on the following priority order:
Journalist Report (daily)
Sol Summary (daily)
Research Report (two-times per mission)
Mission Plan (one-time per mission)
Mission Summary (one-time per mission)
EVA Report (after any EVA)
Usage of a flexible coding technique will allow for addition of new content categories as analysis proceeds for Objective 3. All data will be entered into a spreadsheet to track basic statistics such as counts and averages.
Rationale: Regular reporting between crews and Mission Support is a requirement of the Mars Desert Research Station (MDRS) program and will be essential between Mars colonists and Mission Support on Earth. The MDRS Handbook outlines the schedule for reporting requirements and provides access to templates with some guidance on how to optimally report.

Title: Martian analog paleotemperature reconstruction
Author(s): Adriana Brown
Objectives: Sample a measured section of sediments up the side of Hab Ridge and identify the percent of carbonate present, collect Pycnodonte fossils from the Tununk shale near Hab Ridge and Sea of Shells for carbonate clumped isotope analysis, identify bentonite presence and frequency within the Tununk Shale, and catalog and prepare samples for drilling.
Description: This project will collect sediment samples from the Tununk Shale to study the coastline of the Cretaceous Western Interior Seaway. Sediments will be collected from a measured section up the face of Hab Ridge. Bivalve fossils will be collected from Hab Ridge and Sea of Shells. The samples collected will provide information about the temperature of the seaway during the time the oysters lived using carbonate clumped isotopes, where the carbonate is sourced from bivalves and foraminifera. At MDRS, the sediment samples will be tested for weight percent carbonate and bivalve fossils cleaned, labeled, and catalogued. At University of Michigan, the geochemistry will be completed post-mission.
Rationale: With the onset of cutting-edge geochemistry, the temperature and dynamics of ancient water systems can be determined better than ever before. Performing analysis on carbonates will be essential to understanding climate history on Mars due to their power to record seawater temperature and isotopic composition – abiotic factors that determine essential biological controls, such as oxygenation and environmental habitability. These results will be integrated into my wider research project which aims to reconstruct latitudinal temperature gradients of the Western Interior Seaway – an important control on climate sensitivity.
EVAs: 3-4 medium – long duration EVAs

Title: Mars Exploration by Origami Robot and Drone Scouting or Transportation
Author(s): Aditya Arjun Anibha
Objectives: Apply the concept of transformable origami robots that can exhibit multiple types of locomotion and test their ability to supplement exploration. Investigate feasibility of transporting robot using drone and scouting locations of interest prior to exploration.
Description: Investigating transforming origami robotics with multiple modes of locomotion by testing and demonstrating their effectiveness for extraterrestrial exploration over conventional wheeled rovers. The robot will also be tested for its efficiency, robustness and endurance in this environment. Tests will be conducted in Chandor Chasma as it has diverse terrain types. The robot will be attached to a Skydio drone and transported to and across Candor Chasma. Alternatively, the drone will be used to impart a vertical force upon to counteract Earth gravity to simulate locomotion conditions similar to those on Mars. The drone has security systems to avoid obstacles and contact with astronauts. A lightweight carrying harness will be tied to the drone to create a safe range to the payload to avoid interfering with the sensors. The drone will also be used to conduct scouting for exploration locations of interest for the robot prior to its excursion.
Rationale: Due to the lack of infrastructure on Mars, unique and adaptable methods of locomotion and robots will likely be needed for initial exploration beyond wheeled rovers. Drones would be useful for supplementing exploration with scouting and transportation.
EVAs: 2-3

Title: Miniaturized Martian Agrivoltaics
Author(s): Eshaana Aurora
Objectives: To comprehensively test the impact of solar and artificial irradiation on crop yields within an enclosed, module-like environment. To understand the feasibility of a miniaturized agrivoltaic farm within the MDRS Greenhab.
Description: The project at hand seeks to create a mini agrivoltaic farm within the Martian Desert Research Station’s (MDRS) Greenhab. This study aims to delve into the realm of agrivoltaics, applying its principles to extraterrestrial greenhouse modules. By studying the impact of solar and artificial irradiation on crop yield within the constraints of a mini agrivoltaic farm in the Martian Desert Research Station’s Greenhab, the project aims to provide insights into optimizing land use efficiency on Mars. The mission plan involves meticulous experiments, data analysis, and the formulation of recommendations to advance sustainable agriculture for future Martian colonies while addressing the challenges posed by potential dust storms.
Rationale: As the world grapples with the ever-increasing relevance of solar energy, a constant dilemma has arisen between allocating land for agriculture and dedicating it to solar energy production. Agrivoltaics, a promising solution, represents a system that seamlessly integrates agricultural practices with solar energy production, thus mitigating the competition between our energy and food requirements. As humanity sets its sights on colonizing Mars, the efficient utilization of land resources becomes a paramount concern.
EVAs: 0

Title: LiDAR Scanning of Terrain

Author(s): Riya Raj
Objectives: Will use phone apps to provide accessible scans of the terrain.
Description: Conducting LiDAR scans of the terrain and plants for structural analysis and plant growth structures
Rationale: Provides civil application for future life support systems and planning for efficient living.
Title: Radiation on Kale:
Author: Riya Raj
Description: Working on sustainable methods of growing veggies using simulations in hydroponics to provide fresh nutrients for the body.
Rationale: Keeping our bodies healthy with essential minerals can help with blood pressure levels, red blood cell production, and digestive health!

Title: Indoor Air Quality
Author: Riya Raj
Objectives: Use sensors to monitor air quality
Description: I will be setting up sensor monitors within the stations to track the levels of CO2, PM 2.5, TVOC, and Ozone to ensure proper ventilation for the crews.
Rationale: Monitoring both indoor/outdoor air quality and ventilation levels is important for human health and performance in any setting. For example, high levels of CO2 can cause nausea and fatigue while high levels of PM 2.5 can cause lung diseases and infections.

Bios, Pictures, and Patch – December 24th

Adriana Brown
Crew Commander
Adriana Brown is a recent graduate of Purdue University’s Department of Earth, Atmospheric, and Planetary Sciences. She is currently in the first year of her Ph.D. at University of Michigan, where she works with Dr. Sierra Petersen to research the temperature and oxygen isotope evolution of the Cretaceous Western Interior Seaway. Adriana is passionate about understanding paleoclimatology and large-scale planetary processes on both Earth and Mars and loves fieldwork. She served as MDRS Crew 272’s Crew Geologist and is delighted to be back at the station. On Earth, Adriana can often be found biking, reading Terry Pratchett, or religiously doing the New York Times crossword.

Sara Paule
Executive Officer & Crew Journalist
Sara Paule provides research and grant proposal submission support to faculty at Earlham College where she serves as the Director of Grants and Sponsored Research. She has prior experience with research and development (R&D) and is looking forward to mission for the opportunity to be back on the side of producing knowledge.
For her research, she will examine the skills that analog astronauts use in their daily lives on mission versus which skills they enter simulation believing to be important and whether there is any change in those beliefs post-mission. Secondarily, she will look at past mission reports to analyze and code the content as a means of establishing commonalities and eventually best practices for reporting since communication effectiveness is a primary interest of hers.
Along those lines, she is pursuing a Master’s degree in Communication. In her studies, she is most interested in leadership and internal/organizational communication, which promotes skills for effective team/departmental operation. She is excited to put her theoretical knowledge into practice in the field with her crewmates and to also test out what she has learned about marketing through her journalism role. She looks forward to serving on Crew 289 for the personal growth opportunities and to contribute to human pursuit of life on other worlds.

Gabriel Skowronek
Health & Safety Officer & Crew Astronomer
Gabriel Skowronek is a senior in Physics at Purdue University and minoring in Astronomy and Earth, Atmospheric, and Planetary Sciences. Over the course of two summers, he worked at the Air Force Research Laboratory, studying fiber-optic based laser systems for sensing applications. He is passionate about space exploration in general and hopes to apply his knowledge in developing the next generation of optical devices to use for observing the universe. Outside of work and academics, Gabriel enjoys skiing, scuba diving, hiking or anything pertaining to exploring the outdoors.

Aditya Arjun Anibha
Crew Scientist

Aditya Arjun Anibha is a junior in Aeronautical and Astronautical Engineering at Purdue University with Minors in Computer Science and Business Economics. He is pursuing an integrated master’s in AAE intending to specialize in Astrodynamics with Autonomy and GNC applications. He is also passionate about Space Robotics and Satellites. He is the President of Purdue Space Program, A SEDS Chapter where he has focused on pioneering the Purdue community of student space enthusiasts towards collaboration, inclusivity and innovation at par with the industry. His current research projects involve transformable origami robotics for space applications, and developing novel autonomous asteroid navigation algorithms. On Earth in his free time, Aditya loves flying, cooking, tennis and playing the guitar.

Eshaana Aurora
Crew Geologist
Eshaana Aurora is a senior undergraduate student at Purdue University, currently in pursuit of a double major in Planetary Science and Mechanical Engineering. As the Crew Geologist, Eshaana is deeply immersed in her research, which revolves around the innovative integration of agrivoltaics within the MDRS Greenhab. In the quest to address the ongoing competition for land between agriculture and solar energy, Eshaana is determined to establish a mini agrivoltaic (AV) farm. Her research is strategically positioned to explore and adapt this system for extraterrestrial greenhouse modules, aligning with the imminent challenges of colonizing Mars.
Her study focuses on comprehending the impact of solar and artificial irradiation on crop yield—a critical consideration for future self-sustaining modules, especially in anticipation of dust storms that could lower the solar irradiation in a Mars-like environment. Her work not only addresses current challenges on Earth but also pioneers solutions for the future of space exploration.

Riya Raj
GreenHab Officer & Crew Biologist
Riya Raj is a senior at Purdue University studying Civil Engineering. She focuses her research to go into sustainability, healthcare, and energy efficiency. Her ongoing research into indoor/outdoor air quality analysis with PM2.5, CO2, and TVOC and robotic systems for human health. Her work in the Purdue EPICS (Engineering Projects in Community Service) Department inspired her to help with hands-on projects to provide better living for all communities! Riya also works with Dr. Marshall Porterfield in the Agricultural and Biological Engineering Department with the Purdue ERBSS (Engineering Research for Bioregenerative Sustainability in Space) group to research bioregenerative methods for efficiency in space applications. As Crew 289’s GreenHab Officer/Crew Biologist her work at MDRS will investigate multiple civil applications. She will help in the station’s GreenHab, conduct radiation experiments with hydroponic systems, perform LiDAR scans to map out terrain for future structures, and build indoor air quality sensors for monitoring/analysis.

Nathan Bitner
Crew Engineer
Nathan Bitner is a third-year undergraduate studying Computer Engineering. Stemming from an interest in data science, he has participated in machine learning research with both Purdue’s Nursing department and CILMAR. Hobbies outside of school include reading, gaming, weightlifting and running.

Supplemental Operations Report – December 24th

Date: 12/24/2023
Name of person filing report: Sergii Iakymov
Reason for Report: Routine
Non-Nominal Systems: Intern trailer heater, Perseverance rear view mirror, Crew car

Power system:
Solar: Nominal. On 12/20/2023 the system went offline shortly after switching from generator to solar. Reason unknown, VDC didn’t drop below 42V.
SOC Last 24 hours: Max 100%; Min 82%; Avg 87.8%.
VDC Last 24 hours: Max 59.71V; Min 43.68; Avg 50.50V.
Generator run time: 4422.4 hours. Oil changed on 12/18/2023

Propane Readings:
Station Tank: 83%
Director Tank: 85%
Intern Tank: 87%
Generator Tank: 85%

Water:
Hab Static Tank – 545 gallons
GreenHab – 200 gallons
Outpost tank – 300 gallons
Science Dome – 0 gallons
Hab Toilet Tank emptied: No

Rovers:
Sojourner rover used: Yes, around campus.
Hours: 196.0
Beginning Charge: 100 %
Ending Charge: 100 %
Currently Charging: Yes
Notes on Rovers: Opportunity, Curiosity, Perseverance, Spirit batteries refilled and terminals cleaned on 12/17/2023. Perseverance positive long battery wire replaced "

ATV: ATV’s Used: None. Nothing to report.

Cars:
Hab Car used and why, where: To Hanksville for supplies. Need to be serviced.
Crew Car used and why, where: To Hanksville for supplies.
General notes and comments: Crew car has major coolant leak from the engine. The vehicle is not drivable at the moment and will be scheduled to be taken for repairs.

Summary of Internet: All nominal.
EVA suits and radios:
Suits: All nominal
Comms: All nominal

Campus wide inspection, if action taken, what and why: All nominal
Summary of Hab Operations: All nominal. Main heater filter will be replaced on 12/24/2023.
Summary of GreenHab Operations: All nominal
Summary of SciDome Operations: All nominal
Summary of Observatories Operations: All nominal
Summary of RAM Operations: All nominal
Summary of Outpost Operations: Intern trailer heater isn’t functional and was dropped off for repairs on 12/22/2023
Summary of Health and Safety Issues: All nominal.

Astronomy Report – December 22nd

[category 

astronomy-report]

Astronomy Report
Name: Cesare Guariniello
Crew: 288
Date: 21 Dec 2023

MDRS ROBOTIC OBSERVATORY
Robotic Telescope Requested (choose one): MDRS-WF.
Objects to be Imaged this Evening: Cloudy weather
Images submitted with this report: Leo Triplet (Spiral galaxies M65, bottom left; M66, bottom right; NGC 3628, top), imaged with MDRS-WF.
Problems Encountered: None

MUSK OBSERVATORY
Solar Features Observed: None (cloudy weather)
Images submitted with this report: None
Problems Encountered: None

GreenHab Report – December 22nd

GreenHab Officer: Ryan DeAngelis
Environmental control: Heater on, fan off, door closed.
Average temperatures: 70 deg
Hours of supplemental light: 10 pm to 2 am (4 hours)
Daily water usage for crops: 2 gallons
Daily water usage for research and/or other purposes: 4 gallons (mopping)
Water in Blue Tank (200 gallon capacity): __143__ gallons
Time(s) of watering for crops: 12 pm
Changes to crops: None
Narrative: Got the GreenHab in order today, cleaned it up and made sure all the plants were doing well. Everything is growing like crazy.
Harvest: None
Support/supplies needed: None

Journalist Report – December 22nd

Lipi Roy, Crew 288 Journalist
12.22.2023
Sol 12

One last look at the exquisite Utah landscape, one last day of work, one last dinner together. As we return to Earth on our last day of mission, we reflect on the deeply enriching experience each one of us had…

Our final day began with another round of spam fried rice – driven by Crew demand (and the need to finish leftovers) and supplied by Hunter (Crew Geologist/ on-demand chef). Fueled by this ‘meal of the mission’, Jesus (Crew Engineer) and Hunter proceeded to go all the way to Grand Junction to rent a car (our spacecraft back to Earth) while the rest of the crew stayed back and cleaned the Hab. The successful end to the mission was celebrated with a dinner at Burger Shak (where Hunter undid his spam-fried-rice respect by not living up to the expectation of finishing leftover fries).

It feels like it was just yesterday we stepped into the Hab, excited for our first EVA. Hidden behind the shared EVAs, board games, dinners, and laughs, was a tapestry of diverse experiences, tapping into a shared purpose, and fostering a deep sense of camaraderie. As much as seeing our families and friends for the holidays (and getting human showers everyday) is enticing, I am positive we will all miss the usual sight of Baby Yoda, the Christmas-tree-card unfolding ritual during every dinner and sharing a good meal after wonderful EVAs.

With that, I officially sign off as crew journalist of crew 288. Until next time!

Merry Christmas and Happy Holidays!

Mission Summary – December 22nd

Mars Desert Research Station
Mission Summary

Crew 288 – Phobos
Dec 9th, 2023 – Dec 23rd, 2023

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Riley McGlasson
Crew Geologist: Hunter Vannier
Crew Engineer: Jesus Adrian Meza Galvan
Health and Safety Officer: Jilian Welshoff
Green Hab Officer: Ryan DeAngelis
Crew Journalist: Lipi Roy
x09IW2qP_cEQ1Qu2zZZUFCeqrkCKtpoTigAjDY6CRwvhYljYjvv4e-Il_SqsTl5scc8EtW2C_899Zo0FRCXtQWuasE0gepOae6DK-fgBn1OooDNoa2Lyg167L_kZsIHRKn1GFSKLxENzVYATTqKN2Q
Acknowledgements:
The entire Crew of MDRS 288 would like to express their gratitude to the many people who made this mission possible: our deepest thanks to Dr. Robert Zubrin, President of the Mars Society; Sergii Iakymov, MDRS Director, who assisted us in-situ and helped us troubleshooting the little problems we encountered; Dr. Shannon Rupert, who provided research advice and valuable support remotely; James Burk, Executive Director; Peter Detterline, Director of Observatories, who trained and assisted our Crew Astronomer before and during the mission; Michael Stoltz, The Mars Society Liaison, Media and Public Relations; Bernard Dubb, MDRS IT coordinator; Dr. Kshitij Mall and the Purdue Mission Support staff; the Purdue faculty who greatly helped us in the selection process of Crews 288 and 288 (Phobos and Deimos); all the departments and people at Purdue University and the external sponsors who supported this mission; and all the unnamed people who work behind the scene to make this effort possible, and who gave us a chance to be an active part of the effort towards human exploration of Mars.

Mission description and outcome:
MDRS 288 “Phobos”, twin of mission 289 “Deimos”, is the sixth all-Purdue crew at MDRS. The mission was characterized by very high research quality –despite one project having to be cancelled due to delay in approval by the IRB– and extremely good performance both from a professional and a personal perspective. The diverse crew, including three women and four men, representing four countries and various departments at Purdue, and comprised of undergraduate students, Master’s students, PhD candidates, and professional staff, accurately represented Purdue’s honored tradition in the field of space exploration.
Crew 288 performed various research tasks, with a strong geological focus evident in the many EVAs covering all areas of MDRS and in the amount and quality of samples and scientific data collected. Engineering experiment, astronomical observations, and other research projects concerned with Mars exploration and the operations of astronauts on planetary surfaces were also successfully conducted.
The crew is planning to continue working on the data collected during this mission, to support the twin mission “Deimos”, and to participate in various outreach events, in order to spread awareness about MDRS missions and to foster awareness and passion for space exploration.
A group of people standing in front of a white building Description automatically generated
Figure 1. MDRS 288 Crew posing in front of the habitat. Left to right: GreenHab Officer Ryan DeAngelis, Commander and Crew Astronomer Cesare Guariniello, Health and Safety Officer Jilian Welshoff, Crew Geologist Hunter Vannier, Executive Officer (and Crew Pirate) Riley McGlasson, Crew Journalist Lipi Roy, and Crew Engineer Jesus Meza Galvan

As commander, I am personally extremely proud of this crew, which was capable to keep the highest level of fidelity and realism, without losing sight of the importance of light moments. After passing a rigorous two-phase internal selection process at Purdue, the crew followed training and bonding activities with passion and commitment. At MDRS, the crew properly followed safety and research protocols, performed as a tight group, and found an appropriate mix of research activities and personal time. Every crew member has been attentive to other people’s needs, respectful of differences, conscious of own and others’ goals and shortcomings, flexible and willing to learn and improve. The pace kept throughout the mission was a solid mix of long, fruitful, and professionally conducted EVAs, work in the laboratory and in the RAM, and slower-tempo personal and communal time in the habitat.

Summary of Extra Vehicular Activities (EVA)
After being trained in the use of rovers and in the safety protocols for EVA, the crew had ten excursions during rotation 288, two of which being the traditional short EVAs to Marble Ritual. The remaining EVAs were long excursion, where the crew greatly maximized time usage, especially the time spent walking and performing field activities, which was in average 92% of the total EVA time. The EVAs reached areas in the Mancos Shale (Skyline Rim), Morrison Formation (mostly along Cow Dung Rd), Dakota Sandstone (Candor Chasma), and looked into the Somerville Formation (Somerville Overlook). The EVA served multiple research projects and were used to train crew members who were unexperienced in geologic field work.

Table 1. Summary of EVA, indicating Sol of execution, total duration and distance covered, time and distance spent walking and performing activities, and time percentage spent in activities outside driving.

lUQm3xhDRHlcrlcPc_qEF-NTvBsEa7UhqweSn7QJnF7R4oY_6LuSLKbBFW2wC92Mcxbpo7SzbmkKtSo5nK2u4rN1gBHJ4gw_1OkTolCkMSP88Ix0yd3e9XFXwntNtwL8wPeJu3p40wlC-4vnps6ZVg

Figure 2. Satellite map of the EVAs performed by MDRS 288 crew and of the Station points where samples were collected

Summary of GreenHab Activities
Crew GreenHab Officer: Ryan DeAngelis
The GreenHab is in excellent condition. A lot of things have just been growing and maturing this rotation, with a few exceptions with various herbs and kale. A few of the cucumbers struggled a bit at the midpoint of the mission, exhibiting slowed growth and scarring on the stalks. This, however, was identified as growth marks perhaps exacerbated by slightly too much fertilizer. They are healthy and growing a lot as of the end of this mission. The tomato plants, planted by Crew 287, were caged and trimmed, and we even observed some small green tomatoes growing. In addition to harvesting fresh herbs daily for use in meals, we were able to create several small salads of arugula, kale, and lettuce. We planted more peas, mint, rosemary, carrots, and fennel for hopeful harvest and enjoyment by Crew 289. Overall, the GreenHab provided plenty of herbs and spices, as well as a fantastic place to de-stress for many crew members.

Science Summary
We had 9 separate projects that covered a range of topics. Some of them were EVA-related, while others were conducted at MDRS campus. One project was not conducted because IRB approval was not received in time. Overall, each project uniquely highlighted each crewmember’s strength and expertise, and expanded scientific, engineering, and human factor knowledge to support crewed exploration of Mars.

Research Projects:

Title: Noninvasive search for water
Author: Riley McGlasson
Description, activities, and results: GPR observations were taken at Watney Road, Compass Rock, Brahe Highway, and Hab Ridge. During EVA 3 two 3D GPR grids were taken at the turnoff to Watney Road (WR). One of these was a smaller 15’x15’ grid with 3’ spacing above the dry stream bed, which we used to train the rest of the EVA crew in how to conduct GPR surveys. The second WR grid (WR02) was 36’x36’ with 3’ spacing. WR02 encompassed the dry stream bed and adjacent sandy material. Six total 2D transects were also taken at three sample sites at Kissing Camel Ridge. Unfortunately, there was an error with the radar’s survey wheel, so none of these observations are usable. After EVA 3, this error was fixed, and more data was able to be collected during the remaining 3 GPR EVAs. During these, 100’ x 100’ 3D grids were taken with 10’ spacing at the survey sites, along with an additional 2D transect was taken across ~300’ of material in the same region for quicker analysis. We confirmed that the survey wheel error was fixed, and initial analysis of the 2D transect of the Compass Rock site produces reasonable velocity values for a damp sandy material. The 3D grids will be analyzed back on Earth and compared with spectroscopy data taken at the same sites.

UvR9KNplakBlpxAQXap-wkpvxkZ53giRNLEaGqcUsGHhJ0ck_lQVjjNGSAte8hjgIGSajb1H4W0IGEl8NwUx3QRLrZgblforZfUiRyRObiy-MV0tbyHw1g3uQPG8-3LAghHgGk4VOuUKtfIch_oF1g

Title: Refining orbital data with in-situ analysis
Author(s): Hunter Vannier
Description, activities, and results: Objectives of this study were to compare grain size predictions from orbital data to in situ observations, assess effectiveness of boulder sampling at the base of Kissing Camel Ridge in obtaining representative samples of upper units, and obtain and determine origin of volcanic rocks in the south.
Conducted EVAs to Barainca Butte, Kissing Camel Ridge and Hab Ridge to achieve these objectives. Boulder and grain size analyses were conducted during two EVAs to the Kissing Camel Ridge, which have been compared to orbital estimates. Some grain-size estimates were accurate, but subtleties in the orbital data were not appreciated until on foot, (ex. disproportionate darkening of orbital images from small cobbles). When sampling boulders at base at Kissing Camel and Hab Ridge, the top stratigraphic unit often dominated and other lithologies were not present (most converted to soil). Overall, sampling boulders was useful in obtaining samples from layers otherwise unreachable, but picking sites with less vs. more diversity of boulders was not accurately predicted.
We obtained spectra and samples of at least three igneous units (basaltic andesite, andesite, diorite) transported fluvially to the Barainca Butte area from both Henry Mountains and Capitol Reef. Near Barainca we identified a very high concentration of volcanic rocks in that area that were generally absent in regions north of Zubrin’s head. The fluvial pathway from source to MDRS is still not understood.
Spectra and samples have also been obtained within GPR grids to complement the radar data set with spectral and geologic characterization of the top ~5 cm of unique units within each grid. Preliminary spectral analysis of a site atop Hab Ridge within grey soil devoid of plants yielded a surface crust that appeared like significantly hydrated clay, yet the subsurface that yielded the majority of material appeared to have little hydration. There was also diversity in forms and depths of gypsum, some of which showed signs of oxidation. Not only does this compliment the science goals of radar, but is an important consideration when evaluating hydration of soils at depth for in-situ resource utilization.

AwUDrQINVcD9-Pdm8OZmiNMdOzwGQe19VVPR4IrFxCHtOndA1fhFeS_ztM7pobrBnt4JxshvvbS6Hq3pQXeZqUkLu9g1-INxxnmBVLoK7VP81kmQFugFlWnKsOxIdlyiVDEkh8_hYbRPdagsHlHs1w
Figure 4. (A): Obtaining spectrum of large rounded vesicular basaltic boulder. Red arrows points to abundant igneous rocks in the vicinity, Barainca Butte in the background. (B): Sampling station containing igneous rocks with multiple lithologies.

Title: Remote sensing for ISRU
Author(s): Cesare Guariniello
Description, activities, and results: The goal of this project is to test the use of remote sensing performed in various locations to support advanced In-Situ Resource Utilization. In particular, assessment of mineralogy via remote sensing will provide information about material abundance. Laboratory study of thermal inertia and its correlation with bulk size (sandy vs. rocky) will add one more variable to the study. Thermal Inertia is correlated to particle size and cohesiveness of the material, which in turn suggests the most appropriate tools to effectively collect the material for processing. Water content is assessed via the analysis of the depth of absorption bands in the spectra. This year’s focus has been on consolidated clay rocks. Samples have been collected for this project in the vicinity of Barainca Butte, at the foot of Skyline Rim, and along Galileo Road between Compass Rock and Somerville Overlook. These samples will be subject to experiments related to water content.

Title: Semiconductor processing
Author(s): Jesus Meza-Galvan
Description, activities, and results: The project was focused on the feasibility of basic semi-conductor manufacturing at the station. Two main experiments were conducted to explore silicon-oxide growth, and photolithography. The goal of the first experiment was to determine if oxide growth is possible in one of the lab ovens. A set of silicon samples were placed inside Oven #1 as shown in Figure 5a. A graduated flask with 1 liter of water was placed inside the oven just beneath the samples to maintain a high moisture environment. The samples were then annealed at a maximum oven temperature of 250 °C for a total of 2 hours, 4 hours, and 8 hours. Quantitative analysis of the oxide films will be performed using ellipsometry at Purdue. Qualitatively, there is no visual distinction between the samples indicating little to no oxide was formed. This is as expected given the temperature of the oven was lower than the typical growth temperature of silicon-dioxide in the range of 400 – 800 °C. In order to reliably grow oxide at the station, the oven temperatures must be increased. For the second experiment, a set of silicon samples with a photo-sensitive polymer (photoresist) was prepared prior to coming to MDRS. The laminar flow hood was outfitted to perform UV-exposure of photoresist as shown in Figure 5b. A Dremel stand was used as a makeshift photo-aligner to hold a handheld UV lamp at a constant distance away from the sample and perform controlled UV exposures of the resist as shown in figure 5c. A set of samples with varying exposure time, and varying working distance were made. Qualitatively, the experiment produced several good exposures of a microscope calibration pattern onto the photoresist layer. The success of the procedure will be determined quantitatively by measuring the dimensions of the samples produced against a calibrated microscope at Purdue.

ilHuxvSkKCYA6XF0oGvjbL7qx6HgwUBHn_A8k6wf0qW-CflDquZrrmcIh6rudKYEwfoxbE8MMIY1HfaZOYFPfeNBTk6dou8SEGH3W9FRfifGAfyohpwiFZBJzt7cJHNvgI4lixPZLEUhbgPsF8btaw

Figure 5. Semiconductor Processing at MDRS. a) Silicon-oxide growth experiment in Oven #1. b) Photolithography set up inside laminar flow hood. c) Photolithography exposure.

Title: Reducing stress in isolated environment
Author(s): Lipi Roy, Ryan DeAngelis, Jilian Welshoff
Description, activities, and results: The crew consulted some of the sensors brought to MDRS for this project. However, formal research was not conducted, and test surveys were not administered, because IRB approval was not received in time for the mission.

Title: Astrophotography with the MDRS WF and Solar Observatory outreach
Author(s): Cesare Guariniello
Description, activities, and results:
Solar Observatory: visual observations on one day with the Crew Engineer and the Journalist. Various small problems with the telescope (modified Home Station, and some components left out of place by previous crews) were solved. The observatory bottom shutter also had to be troubleshot. All days not spent on EVA were at least partly cloudy during the day, thus preventing further solar observations.
Astrophotography: MDRS-WF was used to produce high-quality photos of M31 (Andromeda Galaxy), Barnard 33 (Horsehead Nebula), Leo Triplet, M42 (Orion Nebula), M1 (Crab Nebula) and some photos of smaller galaxy with quality that could be improved in postprocessing. Further WCS data are necessary to align images from the MLC-ROS16 telescope.
p98-qFXSCNlF6zDFxz0M1oJpycjA6G9Q12hficFNPtgiQMKjzWKaA8JeTN8DcFz3Qi0EFFEK7it0vxVZZrJTUlmVyzh5aV5qZYX3R0NpdzOi0ZrLHBf3I8Ps5BUoNISxGarLDK_Do4efetJRejxHpA

Title: Station monitoring
Author(s): Jesus Meza Galvan and Jilian Welshoff (proposed by Nathan Bitner – MDRS 289)
Description, activities, and results: The goal of this project is to study what information is most useful to analog astronauts during missions, as well as how this information is leveraged for day-to-day mission planning. A prototype of the sensor payload was completed which integrates temperature, humidity, VOC, CO2, and dust particle sensors with a raspberry-pi and battery package. The sensors have been coded by Purdue mission support who will remotely collect environmental data. Crew 289 will continue the project and create additional sensor payloads to place one monitoring station in each of the MSRS modules, as well as sensors on the air locks to determine if they are closed.

Title: Samples transportation with drones
Author(s): Cesare Guariniello
Description, activities, and results: In past missions at MDRS, drones have been used to prospect potential areas of geological interest. This conceptual project had the goal to prove the feasibility and usefulness of using a drone to transport payloads from the station to astronauts in EVA and vice versa. The capability of the drone to carry small payloads while maintaining maneuverability and safety was successfully tested before the mission. During the mission, part of the EVA to Skyline Rim (EVA #5) was spent in surveying the Hab Ridge for suitable locations for this experiment. Later, two crew members were trained in drone piloting, so as to be able to operate the small drone under the supervision of a crew member who holds a drone pilot license. During EVA #9, the drone was launched from the station with a small rock sample and a message onboard. Both items were received by the EVA astronauts, that successfully used the drone to return a rock sample to the station. The drone was then sent back with a food sample (representative of potential use of a drone to provide tools or support to astronauts on EVA), used by the EVA crew to record footage of the GPR experiment, before being flown back once more to the station.

Title: Chez Phobos
Author(s): Lipi Roy (et al.)
Objectives: Creating new recipes with shelf-stable food at MDRS
Description and Results: Crew 288 members proved that it was quite possible to create healthy, tasty recipes from shelf-stable food items at MDRS habitat. Many new recipes were successfully implemented and very much appreciated by the MDRS members. Riley’s Hab-burger, Ryan’s Pad-Thai and carrot cake, Cesare’s Italian pizza and baked ziti, Jilian’s Mujadara, Hunter’s spam fried rice and tuna-tomato pasta, Jesus’s Spanish rice, and my chickpea curry, kidney beans curry, and potato parathas; all created with minimal outside ingredients! For example, our ‘meal of the mission’ – spam fried rice was prepared using rice, dehydrated eggs, spam, dehydrated onions, dehydrated tomatoes, soy sauce, chilli peppers, salt, garlic powder, black pepper; all available in the hab!

rMpqvJINxFSiAKYaDXA_kq_gGiJEbRtBe56cff0yKW8pe8xlQoqIgEAj0Q48orsOKuekF6z15GUszn9CnWdm3nvDFXsv-B1zRN2h2edV3W3eA_gon36JFTh4AKu_0BuGXIi-OKNusQFcdGG8RTuK_g

End-mission Research Report – December 22nd

[category science-report]

Mars Desert Research Station
Final Research Report

Crew 288 – Phobos
Dec 9th, 2023 – Dec 23rd, 2023

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Riley McGlasson
Crew Geologist: Hunter Vannier
Crew Engineer: Jesus Adrian Meza Galvan
Health and Safety Officer: Jilian Welshoff
Green Hab Officer: Ryan DeAngelis
Crew Journalist: Lipi Roy

CjtyNlxr3vsost0Z1tkQ_lbEK4HVcqpWpXSN5COO2_4bVgfITqyXCsHn4_M9oM5VcZg56yLFMmS5YPPduA9mOC8kGAn1q1o4CXNaCBK2Hctb3CjfJAzNCnbkM5mdI_IwOlFYzWa1RUjzd1cYByM8aQ

Research Projects:

Title: Noninvasive search for water
Author: Riley McGlasson
Description, activities, and results: GPR observations were taken at Watney Road, Compass Rock, Brahe Highway, and Hab Ridge. During EVA 3 two 3D GPR grids were taken at the turnoff to Watney Road (WR). One of these was a smaller 15’x15’ grid with 3’ spacing above the dry stream bed, which we used to train the rest of the EVA crew in how to conduct GPR surveys. The second WR grid (WR02) was 36’x36’ with 3’ spacing. WR02 encompassed the dry stream bed and adjacent sandy material. Six total 2D transects were also taken at three sample sites at Kissing Camel Ridge. Unfortunately, there was an error with the radar’s survey wheel, so none of these observations are usable. After EVA 3, this error was fixed, and more data was able to be collected during the remaining 3 GPR EVAs. During these, 100’ x 100’ 3D grids were taken with 10’ spacing at the survey sites, along with an additional 2D transect was taken across ~300’ of material in the same region for quicker analysis. We confirmed that the survey wheel error was fixed, and initial analysis of the 2D transect of the Compass Rock site produces reasonable velocity values for a damp sandy material. The 3D grids will be analyzed back on Earth and compared with spectroscopy data taken at the same sites.

1gjWZ5A3wzq16z3v1Y4K9n__v-nM62jkim-vrqAwfTzik5kn_jdtyHf33DfgwBvVjTFeH8eQNhpZNQK7q1GxWcr-zhep9SqeCptWIXYtE1S8j9LaIWem8_S6eH9mORMEm-WFyM7SXGesKtfisl2UrQ

Title: Refining orbital data with in-situ analysis
Author(s): Hunter Vannier
Description, activities, and results: Major objectives of this study were to compare grain size predictions from orbital data to in situ observations, and assess effectiveness of boulder sampling at the base of Kissing Camel Ridge in obtaining representative samples of the often out of reach stratigraphy. Both of these objectives can improve our ability to define realistic science goals and predict terrain morphology when planning missions to other planetary bodies with orbital data. Another goal was to obtain and determine origin of volcanic rocks in southern field area.
Through EVAs to Barainca Butte, Kissing Camel Ridge (east and west), Hab Ridge, Somerville Overlook, and Compass Rock, we worked to achieve these objectives. Boulder and grain size analyses were conducted during two EVAs atthe Kissing Camel Ridge, which have been compared to orbital estimates. Some grain-size estimates were accurate (ex. prediction of 1-3 cm cobbles on gravel bar), but as expected, subtleties in the orbital data were not appreciated until on foot, such as disproportionate darkening of orbital images due to cobbles on a largely light-toned sand-dominated stream bed. The effectiveness of sampling boulders at base was variable at Kissing Camel and Hab Ridge; often, the top stratigraphic unit dominated and boulders from other lithologies were not present because most of the layers had been converted to soil. When found at the base of sheer ridges, boulders from multiple units were not observed in orbital data. Additional samples of paleosols were obtained near the base of Kissing Camel W to provide further point of comparison to orbital data. Overall, sampling boulders was useful in obtaining samples from layers otherwise unreachable, but picking sites with less vs. more diversity of boulders was not accurately predicted.
We obtained spectra and samples of at least three, possibly four different igneous units (basaltic andesite, andesite, diorite) transported fluvially to the Barainca Butte area from both Henry Mountains and Capitol Reef. Near Barainca we identified a very high concentration of volcanic rocks in that area that were generally absent in regions north of Zubrin’s head. The samples are identifiable based on phenocryst population and tied to igneous units described in the Geology of Selena Quadrangle, Utah (Williams and Hackman, 1971). The more mafic extrusive rocks are most plentiful and likely sourced from Capitol Reef, and the intrusive intermediate from Henry Mountains. The fluvial pathway from source to MDRS is still not understood, along with why this area of MDRS has so many more igneous cobbles than others. We observed two 0.75 m rounded basaltic boulders, so presumably the deposition required significant energy.
Spectra and samples have also been obtained within GPR grids to complement the radar data set with spectral and geologic characterization of the top ~5 cm of unique units within each grid. Preliminary spectral analysis of a site atop Hab Ridge within grey soil devoid of plants yielded a surface crust that appeared like significantly hydrated clay, yet the subsurface that yielded the majority of material appeared to have little hydration. There was also diversity in forms and depths of gypsum, some of which showed signs of oxidation. Not only does this compliment the science goals of radar, but is an important consideration when evaluating hydration of soils at depth for in-situ resource utilization.

vuutK63PgA8FAjWcgnysLHoEnUfzO3Z-lenL-KW2uHc3LKjGFlT7NQTk37hFyigF0idFeq36uf7TPTBuMoRxpAQAaxisI8wntqRr2evsMygpgNSsWOG178aNGregg6YjpZ5uc3amZFImbAS5vmG3ww

Figure 2. (A): Obtaining spectrum of large rounded vesicular basaltic boulder. Red arrows points to abundant igneous rocks in the vicinity, Barainca Butte in the background. (B): Sampling station containing igneous rocks with multiple lithologies.

Title: Remote sensing for ISRU
Author(s): Cesare Guariniello
Description, activities, and results: The goal of this project is to test the use of remote sensing performed in various locations to support advanced In-Situ Resource Utilization. In particular, assessment of mineralogy via remote sensing will provide information about material abundance. Laboratory study of thermal inertia and its correlation with bulk size (sandy vs. rocky) will add one more variable to the study. Thermal Inertia is correlated to particle size and cohesiveness of the material, which in turn suggests the most appropriate tools to effectively collect the material for processing. Water content is assessed via the analysis of the depth of absorption bands in the spectra. This year’s focus has been on consolidated clay rocks. Samples have been collected for this project in the vicinity of Barainca Butte, at the foot of Skyline Rim, and along Galileo Road between Compass Rock and Somerville Overlook. These samples will be subject to experiments related to water content.

Title: Semiconductor processing
Author(s): Jesus Meza-Galvan
Description, activities, and results: The project was focused on the feasibility of basic semi-conductor manufacturing at the station. Two main experiments were conducted to explore silicon-oxide growth, and photolithography. The goal of the first experiment was to determine if oxide growth is possible in one of the lab ovens. A set of silicon samples were placed inside Oven #1 as shown in Figure 4a. A graduated flask with 1 liter of water was placed inside the oven just beneath the samples to maintain a high moisture environment. A thermocouple was placed approximately 2 inches above the samples to read the local oven temperatures. The samples were then annealed at a maximum oven temperature of 250 °C for a total of 2 hours, 4 hours, and 8 hours. Quantitative analysis of the oxide films will be performed using ellipsometry at Purdue. Qualitatively, there is no visual distinction between the samples indicating little to no oxide was formed. This is as expected given the temperature of the oven was lower than the typical growth temperature of silicon-dioxide in the range of 400 – 800 °C. In order to reliably grow oxide at the station, the oven temperatures must be increased. For the second experiment, a set of silicon samples with a photo-sensitive polymer (photoresist) was prepared prior to coming to MDRS. The laminar flow hood was outfitted to perform UV-exposure of photoresist as shown in Figure 4b. A set of UV-safety goggles was used as a filter for the overhead lamp of the hood to prevent unwanted exposure of the resist. A Dremel stand was used as a makeshift photo-aligner to hold a handheld UV lamp at a constant distance away from the sample and perform controlled UV exposures of the resist as shown in figure 4c. A set of samples with varying exposure time, and varying working distance were made. Qualitatively, the experiment produced several good exposures of a microscope calibration pattern onto the photoresist layer. The success of the procedure will be determined quantitatively by measuring the dimensions of the samples produced against a calibrated microscope at Purdue.

_Td2BfsZW2yUOyrEPpOpwUHj6PqQZMFxT6rKxg4jbvwrGR2nv26Pm6mOdrOCk8rHa_s5DwV7W8vR1y49aN0OXS53AvLxPy1PmzGjWp-I3U9hmCRL2g-NX3kOO8c7ZewIJVvZjfl3CQQb3h5kIvYh4w

Figure 3. Semiconductor Processing at MDRS. a) Silicon-oxide growth experiment in Oven #1. b) Photolithography set up inside laminar flow hood. c) Photolithography exposure.

Title: Reducing stress in isolated environment

Author(s): Lipi Roy, Ryan DeAngelis, Jilian Welshoff
Description, activities, and results: The crew consulted some of the sensors brought to MDRS for this project. However, formal research was not conducted, and test surveys were not administered, because IRB approval was not received in time for the mission.

Title: Astrophotography with the MDRS WF and Solar Observatory outreach
Author(s): Cesare Guariniello
Description, activities, and results:
Solar Observatory: visual observations on one day with the Crew Engineer and the Journalist. Various small problems with the telescope (modified Home Station, and some components left out of place by previous crews) were solved. The observatory bottom shutter also had to be troubleshot. All days not spent on EVA were at least partly cloudy during the day, thus preventing further solar observations.
Astrophotography: MDRS-WF was used to produce high-quality photos of M31 (Andromeda Galaxy), Barnard 33 (Horsehead Nebula), Leo Triplet, M42 (Orion Nebula), M1 (Crab Nebula) and some photos of smaller galaxy with quality that could be improved in postprocessing. Further WCS data are necessary to align images from the MLC-ROS16 telescope.

mek8npI4S-MVsNTMasd71zIXSBd6GJIFRzD5Ous_VWHBx2FF9NeEKdIgHQ6iVHRAKCRH45Eru2GIeyaRpqBhEQpSKBilw1f5GayTPPOZ65B6dGHFbdzl7Mu3KFC_FxjIhL7Gq8E4S1FcP3QZdYu2yQ

Title: Station monitoring
Author(s): Jesus Meza Galvan and Jilian Welshoff (proposed by Nathan Bitner – MDRS 289)
Description, activities, and results: The goal of this project is to study what information is most useful to analog astronauts during missions, as well as how this information is leveraged for day-to-day mission planning. A prototype of the sensor payload was completed which integrates temperature, humidity, VOC, CO2, and dust particle sensors with a raspberry-pi and battery package. The sensors have been coded by Purdue mission support who will remotely collect environmental data. Crew 289 will continue the project and create additional sensor payloads to place one monitoring station in each of the MSRS modules, as well as sensors on the air locks to determine if they are closed.

Title: Samples transportation with drones
Author(s): Cesare Guariniello
Description, activities, and results: In past missions at MDRS, drones have been used to prospect potential areas of geological interest. This conceptual project had the goal to prove the feasibility and usefulness of using a drone to transport payloads from the station to astronauts in EVA and vice versa. The capability of the drone to carry small payloads while maintaining maneuverability and safety was successfully tested before the mission. During the mission, part of the EVA to Skyline Rim (EVA #5) was spent in surveying the Hab Ridge for suitable locations for this experiment. Later, two crew members were trained in drone piloting, so as to be able to operate the small drone under the supervision of a crew member who holds a drone pilot license. During EVA #9, the drone was launched from the station with a small rock sample and a message onboard. Both items were received by the EVA astronauts, that successfully used the drone to return a rock sample to the station. The drone was then sent back with a food sample (representative of potential use of a drone to provide tools or support to astronauts on EVA), used by the EVA crew to record footage of the GPR experiment, before being flown back once more to the station.

Title: Chez Phobos
Author(s): Lipi Roy (et al.)
Objectives: Creating new recipes with shelf-stable food at MDRS
Description and Results: Crew 288 members proved that it was quite possible to create healthy, tasty recipes from shelf-stable food items at MDRS habitat. Many new recipes were successfully implemented and very much appreciated by the MDRS members. Riley’s Hab-burger, Ryan’s Pad-Thai and carrot cake, Cesare’s Italian pizza and baked ziti, Jilian’s Mujadara, Hunter’s spam fried rice and tuna-tomato pasta, Jesus’s Spanish rice, and my chickpea curry, kidney beans curry, and potato parathas; all created with minimal outside ingredients! For example, our ‘meal of the mission’ – spam fried rice was prepared using rice, dehydrated eggs, spam, dehydrated onions, dehydrated tomatoes, soy sauce, chilli peppers, salt, garlic powder, black pepper; all available in the hab!

AEE9AfTd1OCdD-TOHnjq6b82DQpGiv35izvw44wAglIk2_XyN7ON8iRBsVhEN2c_YJL3jVr0tZk5iU_bFQslMwLo8S8poW4evLhfG-0A7t6z2mB5gfklG50kdY0e2fFVhI75AHOyrOiicEKAQAABJQ

Copyright © The Mars Society. All rights reserved. | Main Site