Final Mission Summary – Crew 201

Mission Summary

Misión de Exploración – 1

Crew 201

Tania Robles – Commander

Juan Carlos Mariscal – Executive Officer

César Serrano – Crew Engineer

Federico Martínez – Crew Astronomer/Scientist

Genaro Grajeda – Health and Safety Officer / Journalist

Walter Calles – Greenhab Officer / Journalist

 

December 15th – 30th, 2018

Mission Plan:

 

MEx-1 is a Mexican initiative that seeks to encourage the interest of the general population, industry, academia and government of Mexico about the benefits of space exploration and its applications.

 

This through the creation of the first Mexican program of missions in MDRS conformed by a team of astronauts and a ground support on Earth. MEx-1 is a mission that had the previous support of an aerospace doctor and specialist psychologists to evaluate the physical and mental conditions of astronauts prior to the establishment of tasks and workloads of the missions.

 

The general objectives of Mex-1 are:

  • Integration of a national multidisciplinary team that provides necessary support to the astronaut’s activities that will be carried out before and after the mission.
  • Document and generate the necessary historical information to be able to organize easily later iterations of the mission.
  • Generate media impact necessary to attract and encourage the participation of children and youth in space activities in Mexico.
  • Encourage students and entrepreneurs to develop business activities focused on the creation and integration of projects that benefit and / or use space or high technology resources related to space exploration.

 

Crew 201 Projects:

 

Title: The Multidimensional Fatigue Symptom Inventory

Author(s): Betel Martinez, Genaro Grajeda

Objectives: To know the psychological state and mental fatigue of the astronauts through the daily filling of the mental fatigue questionnaire.

Results: The Crew has been doing daily tests to understand the effects of isolation, stress and heavy workloads on people but specifically what are the effects on Mexican nationals. This tests have been received by professional psychologists and will be analyzed during the next few months and give recommendations for future crews with Mexican nationals as well as an opportunity to test it with professionals doing work in isolation like remote ocean vessels and mining stations.

 

Title: Crew Wellness Experiment

Author(s): Carlos Salicrup, Genaro Grajeda

Objectives: Measure and document the crew’s weight, water consumption and pressure variation during the mission.

Results: The Crew has been doing daily measurements of weight, water consumption, nutrition, heart frequency and blood pressure. This experiment wants to further understand the effects of isolation, stress and heavy workloads on analogue astronauts for future missions as well as to properly prepare selected analogue astronauts on what pre-mission activities are to be done to complete missions successfully. Additional tests on dehydration after EVAs were done to understand the workload and exercise done by analogue astronauts during extended multihour multiactivity missions with space suits.

 

Title: Very Small Aperture Terminal (VSAT) Pointing

Author(s): Genaro Grajeda, Federico Martínez

Objectives: Point a VSAT with 3D printed tools

Results: The VSAT pointing experiment was unsuccessful due to logistic delays for the main component of the experiment. Nonetheless, the 3D printer was used to make 9, 10 and 11 cm wrenches that are standard for the nuts and bolts on an standard VSAT kit and can be left at the station for durability tests as well as strength tests that printed tools offer. The VSAT pointing team performed two EVAs to analyze locations to install the VSAT that could be used for connectivity to make a smart habitat as well as locations for possible microwaves with omnidirectional antennas that can serve the purpose of asset tracking and crew EVA safety.

 

Title:  3D Printing in space exploration

Author(s): Federico Martínez

Objectives: The main objective of using 3D printing is to provide us personalized tools for our VSAT pointing project and spare parts. This experiment will provide support on the construction of a rover prototype as well, and an analysis of the Hab will be done to use this technology to provide daily use supplies.

Results: The use of 3D printing it’s becoming something usual when we talk about manufacture and technology. Having this kind of technology on site gives us advantages as rapid prototyping, personalized tools, variety of materials and many others.

The main idea of using 3D printing was to make specialized tools for the VSAT project on MDRS a set of three tools were designed and printed likesome open end wrench of different dimensions (9mm, 10mm, 11mm) that took around eight hours to be finished. Also the design and printing of an adjustable wrench ready. However there were some issues with the weather and the behaviour of the 3D printer with the Martian weather conditions, plus the logistical difficulties of the VSAT system to arrive to MDRS. It made us took the decision to stop the printing of this parts and focus on using the material on making the rover with the preliminary designs.

The printing of 28 parts of the rover took about 50 hours. This time doesn´t include failed printed parts, software configuration and machine calibration.
At the beginning of mission we assemble, repaired and installed the 3D printer on the RAM. The malfunction of a temperature sensor gave us trouble so it was replaced, however the low temperature inside the RAM was making the parts warping on the corners. After several attends of printing and mechanical and software adjustments, the crew took the decision to move the printer to the low deck of the Hab. This gave us better results, reason why we have been able to print the tools and the 99% of the rover parts.

Due to the low temperatures during the last couple of days, it turned harder to continue printing with the cold weather and wind as main factors. These conditions are not the best conditions for this kind of amateur 3D printers.

We will continue working in these projects on Earth and as a main objective, we will make improves to the 3D printer to make it capable to print on tough weather conditions, starting with an enclosure to keep the heat, a stronger frame, and an extrusion system capable of reaching higher temperature.

 

Title:  Engaging space to the people

Author(s): Crew 201

Objectives: Generate audio visual content that will be published to increase the awareness of space sector and the interest of young students and professionals in space exploration from Latin America.

Results: All the material was recorded and will be under the editing process at the beginning of January. It consists in a series of interviews with the Crew members about their daily work at MDRS and personal objectives. It was directed and produced by the members of Crew 201.

 

Title:  Validation of electronics architecture and communication protocols for an exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Validate the function of electronic components in hostile (low) temperature conditions. Validate communication protocols for exploration vehicles in the Martian environment.

Results: Regarding the electronics architecture and communications protocols of the rover, due to the requirements of the long distances communications; we chose devices capable to transmit at least 1k data. The project consisted in a long distance command data transmission for the autonomous manipulation of the rover.

During the first days of the mission, we worked with the electronics to test the code of the data transmission. First, we started to set up the devices with the software, but it seemed that they had a malfunction or that the PCBs were not working properly. We tried with different devices, different laptops and different software, but the problem was still remaining. During several days of trying to communicate with the laptop, we started to think in alternative solutions. After testing carefully each electronic module and obtaining the same results, we decided to ask for another devices but, unfortunately they never arrived.  While we were waiting for the electronics components, we focused in the 3D printing of the Rover and tools.

 

Title:  Behaviour of Artificial Vision algorithms for Autonomous Navigation

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Test the quality of the images obtained by given cameras. Test the efficiency of AV algorithms and tools to identify samples of Martian rocks based on their colour and size. Test the efficiency of stereo vision to estimate distances using bi dimensional images

Results: During the simulation we were able to take the necessary pictures to test and train artificial vision algorithms for recognition of patterns of colour, form and size as well as distance and depth estimation using stereo vision.  To take the pictures, we used two high definition web cameras fixed and configured to take identical pictures with angle difference.  The pictures taken include several kinds of terrain such as flat, big-sized rocks or hills, small rocks (obstacles) and sand.  Although the algorithms could not be fully functional due to software configuration issues, the images will certainly be very useful for future work.

 

The software developed is part of the autonomous navigation system of a rover prototype that will explore and help in several tasks both in space and Earth.

 

Title:  Prototype and mechanical testing of Exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Prove the expected behave of the mechanical systems of the Rover.

Results: We designed a rover prototype for testing the behaviour of the mechanical parts in hostile surfaces. All the Rover design was completed in México and, during the mission, we printed a scaled version of it, due to the original prototype that we were supposed to use at MDRS never arrived because of logistics problems.

While printing it, we found that the low temperature inside the RAM was affecting in a bad mode the printing, so we moved the printer in the lower part inside the Hab. Later in the mission, we faced some problems with the printing again, such as the air flow inside the Hab, the place was not the flattest for printing, also, some sensors were not working as they must to, like the thermal sensors of the bed and extruder. This stopped us in the advance of the printing and assembling of the Rover.  However, the Rover was built in its 99% and we are still waiting for the last printing parts.

 

Title:  Martian Soil Analysis for usage on Greenhab

Author(s): Walter Calles

Objectives: Explore, collect and analyze multiple soil samples on the Martian soil on MDRS to test their capability for plants seeding and growing on the Greenhab. Up to 5 different soil samples will be mixed with different combinations of organic material to see which can be used as Greenhab ground.

Results: On two EVAs, 5 different soil samples were collected, categorized and used to test their capacity for growing plants. To get started, those samples were mixed with ground soil in small percentages and tested with three radish seeds. 3 of the 5 samples were tested in the following percentages: Type 1 soil sample in 10,20,30,40 and 50% mixes. Only 10, 20 and 30% showed results. 40 and 50 percent didn’t show any progress, probably for the very low concentration of soil sample/ ground used (234g). For types 2 and 3, only 10 and 20% mixes were tested.

Both showed results, but in a lower scale, compared to type 1. Next steps suggest a new round, using more organic ground (~800g as total). The next step as well should be the categorization and testing of types 4 and 5 of the Martian soil samples. The experiment ran through 8 sols. A separate and more elaborated experiment summary will be delivered to the next crew’s Greenhab officer to keep track and continue with these testings.

Journalist Report Dec 31st

MDRS Crew 202, Journalist Report

Sol 2 – 12/31/2018

Name the space movie given the following quote. Answer at the end of the Report:

Now, this is important. Once the battery is removed, everything is gonna slam into emergency mode. Once we have it, we gotta move quickly, so you definitely need to get that last… Or we could just get it first and improvise!

Today’s the day! The snow is falling! And we are officially starting the Sim! The sun rose with the symphonic sounds of the Apollo 13 soundtrack echoing through the habitat. It may be the last day of the year, but it is the first day of real Mars living for our crew. Through the white noise of the water pump, crew “singing” (a.k.a. snoring), and the occasional bumps in the night of members discovering different walls and corners surrounding their bed, the crew awoke refreshed and ready. Sleep was especially important last night. Today, the entire crew would perform their first Extra-Vehicular Activities (EVAs).

The day began with sweeping and shoveling of snow on the porches, tunnels, and solar arrays of our home. This proved fruitless as it snowed again in the afternoon, but at least we were safe from ice for the first few hours. This was followed by our last MDRS training session on how to drive the rovers. Now the real work begins, but what does a “full simulation” entail? Full simulation includes limited communication with the outside world, standing in an air lock for 5 minutes to depressurize the entryway when exiting the habitat, and donning our suits anytime we leave the safety of the habitat. Essentially, it’s continually asking the question “Is this something that would be done on Mars?”.

The EVAs were a wonderful learning opportunity as we explored the capabilities of the rovers and tested the comfort of the suits. Flurries melted onto our helmets as we traversed the “Marble Ritual” landscape. Each member danced among the painted, hanging bunt pans, miraculously not hitting any of the poles with our limited vision in the clunky space suits. We found a rock with holes that looked like a smiley face, crunched over clay and dirt to test the GoPros on the expansive mountain landscape, and quickly returned to the warmth and comfort of the habitat. The crew is as green as can be with only one veteran Martian on board, but we are also excited, hard-working, and determined to make the most of our time on Mars as we learn the ins and outs of performing an EVA.

If you thought the Great Nutella Crisis of Crew 202 was traumatic, you haven’t heard of the even GREATER Tea Kettle Crisis of Crew 202. Today the tea kettle broke… leaving us to boil water on the stove like pilgrims. It’s a true tragedy here on Mars, but I think the crew will power through it.

An exciting end to an exciting day as the crew prepares to celebrate New Years Eve on the Red Planet. The commander is cooking baked ziti which intoxicates the room with smells of tomato, basil, and garlic. It is almost as powerful as the aroma of chocolate brownies by our Crew Engineer emanating from the toaster oven. As we prepare the 2019 tiaras, blow on the noise makers, and pull the tab on poppers, we reflect on the previous year and the new year to come. The meetings, preparations, and packing that has brought us to this moment as a new crew family, and the incredible adventure that awaits us in the new year. When midnight on Earth strikes at 0.5317 Martian years, we will hold our loved ones on the pale blue dot in our thoughts and wish everyone back on our first home a Happy New Year.

Movie Answer: Guardians of the Galaxy

EVA Report Dec 31st

Crew 202 EVA Report 31-Dec-2018

EVA #2

Author: Denys Bulikhov (EXO)

Purpose of EVA: familiarization with suits, rovers, communication procedures, testing the ability to use scientific equipment in EVA conditions.

Start time: 15:36

End time: 16:23

Narrative: EVA 2 crew successfully reached the Marble Ritual. On site EXO attempted to use some of the scientific equipment. It was partially successful due to freezing wind and blizzard. Familiarization had to be cut short due to deteriorating Martian weather.

Destination: Marble Ritual

Coordinates (use UTM NAD27 CONUS): E518700, N4250800

Participants: Denys Bulikhov (EXO), Kasey Hilton (ENG), Jake Qiu (HSO)

Road(s) and routes per MDRS Map: Cow Dung Road, then walk East towards Marble Ritual

Mode of travel: Driving and walking

Vehicles used: Spirit and Opportunity

With best regards,

Denys Bulikhov

Green Hab Report Dec 31st

Crew 201 Greenhab Report 31-DEC-2018
Greenhab Officer:
Jake Qiu

Environmental Control:
Heating
Cooling w/ ambient air (1hrs)

40% Shade Cloth on
80% Shade Cloth put on far right corner

Average Temperatures:
Low: 22.9°C
High: 33.0°C

Hours of Supplemental Light:
5

Daily Water Usage of Crops:
8 gallons

Water in Blue Tank (lbs):
95%

Times of Watering for Crops:
1708

Changes to crops:
* Mixed salad greens harvested
* Cucumbers displaying good progress
* Chives sprouting
* Radish displaying good progress
* Carrots look dry
* Cress displaying good growth
* Sugar Snow Peas displaying good growth
* Savory Mix sprouting

Narrative:
Its about to be 2019 and we are celebrating with a large meal!
Fortunately, the greenhouse can provide with some herbs and mixed greens for the feast!
Some plants were harvested and watered. A majority of the plants are looking good.
Some of the carrots’ stem are not rigid and falling over.

Experiment Results:
Date: SOL2 Crew 202 (SOL14 overall)
Watered samples

Harvest:
* Basil – 6 g
* Parsley – 1 g
* Mixed Salad Greens – 259 g

Support/Supplies Needed:

Best,

Jake

Operations Report Dec 31st

Crew 202 Operations Report 31-DEC-2018

SOL: 2

Name of person filing report: Kasey Hilton

Non-nominal systems: Suits #3 & #7, electric tea kettle, and hot water heater

Notes on non-nominal systems: Two-piece suit #3 and one-piece suit #7 won’t turn on even when plugged in; Electric tea kettle in kitchen does not turn on even when we plugged it into a different outlet; Hot water heater ignitor doesn’t work so there is not hot water in the Hab.

Generator (hours run): 7hr 47min; Turned off around 9:38 AM; Turned on at 5:25 PM

Solar – SOC 86%

Diesel Reading – 75%

Propane Reading – 57%

Ethanol Free Gasoline – Not in use

Water (auxiliary tank) – Not in use

Water (static tank) – Full; 530 gallons

Auxiliary to Static tank transfer – No

Gallons transferred: Not applicable

Water in GreenHab – Full; 280 gallons (assuming that the tank is 300 gallons)

Water (loft) – At level marker 12

Static to Loft Pump used – Yes; At 6:24 PM to refill loft tank

Water Meter: 01397146 units

Toilet tank emptied: No

Deimos rover used: No, still not functional

Hours: Not applicable

Beginning charge: Not applicable

Ending charge: Not applicable

Currently charging: Not applicable

Sojourner rover used: ASSIGNED TO DIRECTOR

Hours: Not applicable

Beginning charge: Not applicable

Ending charge: Not applicable

Currently charging: Not applicable

Spirit rover used: Yes

Hours: 63.4

Beginning charge: 84%

Ending charge: 74%

Currently charging: Yes

Opportunity rover used: Yes

Hours: 45.2

Beginning charge: 90%

Ending charge: 83%

Currently charging: Yes

Curiosity rover used: Yes

Hours: 61.5

Beginning charge: 100%

Ending charge: 74%

Currently charging: Yes

Notes on rovers: None

ATV’s Used: Honda, YODA (300), 350.1 (Honda, 300, 350.1, 350.2, 350.3)

Reason for use: Training for geology EVA

Oil Added? No

ATV Fuel Used: Tanks are still full; Only used for about 10 minutes each

# Hours the ATVs were Used today: 1hr

Notes on ATVs: All VIN numbers on ATVs were located and registration papers were found for one. YODA, Honda, and two of the 350s were started and driven today, but they were very hard to start in the cold. The Honda, YODA, and 350.1 remain at the Hab for a geology EVA later in the rotation. There are two other 350s that are being worked on since one battery doesn’t work and the other is making a weird noise. One of these 350s will be brought to the Hab later.

HabCar used and why, where? Off site

CrewCar used and why, where? Off site

General notes and comments: Spent the first half of the day training for EVAs and ATVs. The second half of the day was spend doing two EVAs, both to Marble Ritual and back.

Summary of internet: Nothing to report

Summary of suits and radios: Two-piece suit #3 and one piece suit #7 air flow not working as reported from yesterday and mentioned above in “Non-nominal systems”

Summary of Hab operations: The hot water heater igniter doesn’t work and there is not hot water in the Hab as mentioned above in “Non-nominal systems”

Summary of GreenHab operations: Nothing to report

Summary of ScienceDome operations: Nothing to report

Summary of RAMM operations: Nothing to report

Summary of any observatory issues: Nothing to report

Summary of health and safety issues: Nothing to report

Questions, concerns and requests to Mission Support: I have not heard anything about the two-piece suit #3 since it was reported about 2 days ago.

Copyright © The Mars Society. All rights reserved. | Main Site