Mission Summary – January 3rd

Mars Desert Research Station
Mission Summary

Crew 306 – Montes
Dec 22nd, 2024 – Jan 4th, 2024

Crew Members:
Commander: Jesus Meza-Galvan
Executive Officer and Crew Engineer: Keegan Chavez
Crew Geologist: Elizabeth Howard
Health and Safety Officer: Ryan Villarreal
Green Hab Officer: Adriana Sanchez
Crew Journalist: Rodrigo Schmitt
AD_4nXe0411XwK9u9wfVwL-8Xz1g0PqVVmJdRmBqOrCvrvnUHcJyZWNFN7oq4KnF1kofa6OGA55uHRGKKgqVNBPDlprKar5rbx5poAoK-JWfRK-kpHS8vKmfbc9P_pmEuv7tVNeKhPLKZ6PcU2wiNTTg2is?key=J05YFPp3N4Sa0Tt6XP-20KW2

Acknowledgements:
MDRS crew 306 crew would like to express their gratitude to the many people who helped us put together a successful mission. Firstly, we would like to thank MDRS director Sergii Iakymov, who has been our Mission Support staff here at the station. We are grateful to have a NASA HERA analog astronaut taking care of us in the background. We are also grateful to Russ Nelson for preparing our emergency response plan and taking the time for our orientation; Scott Davis for EVA suit support; Mike Stoltz for his help and guidance on media relations. Ben Stanley, MDRS analog Research Program Director and David Steinhour, MDRS Site Manager; James Burk, Executive Director; Dr. Peter Detterline, Director of Observatories; Bernard Dubb, MDRS IT coordinator. And of course, Dr. Robert Zubrin, President of the Mars Society. From Purdue University we would like to give a special thanks to, Dr. Cesare Guariniello, Dr. Kshitij Mall, Dr. Ariel Black, and Dr. Riley McGlasson for helping us select some of the best researchers that Purdue has to offer, and for advising us on research and mission plans. We would also like to thank the many students that make up the Purdue Mission Support staff; and all of the Purdue educational departments that helped fund this opportunity for crews 305 and 306.

Mission description and outcome:
Crew 306, “Montes”, is the twin mission of Crew 305, “Valles.” Valles and Montes are the eighth and ninth crews invited by MDRS from Purdue University. The team included two women and four men, and represented three countries; the United States, Brazil, and Mexico. The crew was composed of three Aerospace Engineers, one Agricultural and Biomedical Engineer, one Industrial Engineer, and one Electrical Engineer. Crew 306 had three PhD students, two MS students, and one undergraduate student representing Purdue University’s leadership in space research. The crew was able to experience all aspects of space exploration, from mission planning, to field research, to station keeping. The team utilized the analog environment surrounding the station to perform a variety of experiments related to the long-term survival of a manned Mars station. We addressed the need for mapping and scouting terrain using a drone-based Li-DAR system. We addressed the need for sustainable waste management using fungi to break down and upcycle resources that would otherwise be lost. We addressed the need for crew and station health monitoring by implementing both wearable health monitors and environmental sensors placed throughout the station. We addressed the need for in-situ resource utilization by collecting semiconductive materials from the environment and attempting to make photo-voltaic cells. And finally, we performed geological research by measuring the subsurface magnetic properties of the surrounding environment. Montes and Valles are privileged and grateful to MDRS for offering back-to-back crew rotations to Purdue University, allowing us to engage in extended projects and inter-crew collaborations.

AD_4nXcELU6S0HQL9kiP0uP8V18GrY4cOIIJinfVoASQznT8FuwAGDnySDZXWbT0rRbxhnuL1LTI1J59RqP90zXZLec_ElfumAXt8GhD7z4rA34pbXi4CPZRtHj8ANLQ7i1quwDGsKGjWD60ag2cRJ4myJc?key=J05YFPp3N4Sa0Tt6XP-20KW2
Figure 1. MDRS Crew 306, “Montes”. Left to right: JOU Rodrigo Schmitt, HSO Ryan Villarreal, GEO Elizabeth Howard, CMD Jesus Meza-Galvan, GHO Adriana Sanchez, ENG Keegan Chavez

It must be noted that the crew commander is very proud of the way his crew performed during the mission. Everyone on the team showed exemplary skills in performing their duties to the station. GHO Adriana Sanchez took extremely good care of the GreenHab and provided the crew with lots of laughs and fresh produce throughout the mission. JOU Rodrigo Schmitt really put his heart into his daily reports and made us feel like heroes in our story. ENG Keegan Chavez spent many hours on repairs and improvements to the station, including patching up the tunnels that keep the station modules connected and the crew alive. GEO Elizabeth Howard showed great leadership and endurance out in the field during EVAs, leading our science efforts. HSO Ryan Villarreal took the job of monitoring the crew’s health very seriously, making sure the crew was following safe procedures and patching up our small wounds. Thank you all for your hard work, positivity, humor, collaboration, and kindness to each other throughout our mission.

Summary of Extra Vehicular Activities (EVA)
Crew 306 performed 11 total EVA’s. Two EVAs were made to Marble Ritual for orientation. The remaining nine EVAs were multipurpose science EVAs split between three main projects; 1) Digital Reconstruction and Optical Navigation of the Environment (DRONE); 2) Measurements of Subsurface Magnetic Properties (EMF); and 3) Fabrication of photovoltaic cells using in-situ resources (PV). Table 1 has a summary of EVA times and target locations. Figure 2 shows a GPS map of all EVA tracks, markers for sample collection areas, EMF measurements, and DRONE locations. Locations of interest were Kissing Camel, HAB Ridge, Skyline Rim, Eos Chasma, White Rock Canyon, and Barrainca Butte. DRONE Li-DAR scans, EMF measurements, and sample collection for in-situ resource analysis were all performed at these sites.

Table 1. Summary of EVA operations.
AD_4nXdyzX8nKP-I-Xn2ANI8zM-lQ4BntkLcAotPmWD7qB7qwsLWz547K8_mzKomtyXw1OBpMW-wunktEbBZ2LJmCy9bd3UZT51wac_Z8Dmsq7QSoUyIwMWFxn41qcSq24AtGQ0En7qQCH6RY2oLkmKNPvw?key=J05YFPp3N4Sa0Tt6XP-20KW2
AD_4nXeuRr9i6EfzZFtYDHSltMmK6kuobbHnuIbNSWQI9JjE4iuVNVoXrijcXRzVLUsc-3tbqF9I_LssvfKtMbr59qH6UK3wwjyiI3n_F1qQp2jGYqZS8nQLV4Aoi06g6A3im7L6qmP1IR9ID-vdV2GLKwY?key=J05YFPp3N4Sa0Tt6XP-20KW2
Figure 2. Satellite map of Crew 306 EVA locations and tracks. Blue-flag markers indicate locations where samples were collected for Photo-voltaic project, DRONE flights were performed, and EMF measurements were taken. Red-pin markers indicate target EVA site.

Summary of GreenHab Activities
Following Crew 305’s advice, the cucumbers were watered twice daily to prevent wilting. We were able to eat cucumbers almost daily and many tomatoes appeared during our stay. With a little more time, they should be ready for harvesting. The carrots started peaking in our last few days and will be mature in the following weeks. During my stay I transplanted sunflowers, thinning of tomatoes, and replaced a pot of arugula with pea sprouts (after using the arugula of course). The crew was able to enjoy daily use of crops in meals, adding a much-needed splash of green.

Science Summary
Crew 306, “Montes” performed seven separate projects that covered a range of topics. Three of our projects required EVA activities. The other four projects were performed within the HAB, Science Dome, and RAM. Each crew member was responsible for proposing, planning, and executing their own project, highlighting the diverse expertise of the crew. The team utilized the analog environment surrounding the station to perform a variety of experiments related to the long-term survival of a manned Mars station. We addressed the need for mapping and scouting terrain using a drone-based Li-DAR system. We addressed the need for sustainable waste management using fungi to break down and upcycle resources that would otherwise be lost. We addressed the need for crew and station health monitoring by implementing both wearable health monitors, and environmental sensors placed throughout the station. We addressed the need for in-situ resource utilization by collecting semiconductive materials from the environment and attempting to make photo-voltaic cells. And finally, we performed geological research by measuring the subsurface magnetic properties of the surrounding environment.

Research Projects:

Title: LIDAR-Enhanced Drone Simulations for Mars EDL Operations
Author: Rodrigo Schmitt
Objective: Demonstrate the use of drone-based LIDAR operations to perform local mapping of the terrain. Final Status: While large-scale data post-processing awaits more bandwidth and time, initial analyses confirm the potential for drone-based LIDAR mapping to enhance Martian EDL site selection (Figure 3). Despite challenges arising from mechanical vibration, electromagnetic interference, and communications constraints, the project demonstrated a successful synergy of LIDAR, IMU, and GPS sensors on a drone platform. Future work will emphasize advanced data fusion, extended flight tests, and real-time operation, thereby contributing to more robust and detailed EDL planning capabilities for planetary exploration.
Inserting image...
Figure 3: (a) Drone assembly with LIDAR sensor and mount; (b) Drone full assembly during an EVA with battery and onboard computing via Raspberry Pi

Title: Subsurface Magnetic Properties of the Martian Environment
Author: Elizabeth Howard
Objectives: Study geological magnetism to develop test procedures for future missions.
Final Status: A satisfactory number of EVAs were completed using the EMF meter for data collection; this data has been plotted and is able to undergo post-processing. This will involve analysing trends in data such as short-term (on the order of minutes) changes in readings as well as overall daily value ranges. Soil types where the instrument was placed were collected and qualitatively logged to consider this as a factor in day-to-day data trends.
AD_4nXeRosrR_DDz0vdGuVw2e3K8Kj2oErz9iEox3Etmq-DiEx5yQZCTkhv9sdW45jJLuHXCiHrlUEaUGf9pVJUK5EVMTl37w8QZ1oaKdpWNBBwdNuAq1gFoG-jmbqI6phMg6XAMr7HX93mQagC3mCwa_Ac?key=J05YFPp3N4Sa0Tt6XP-20KW2
Figure 4: Elizabeth Howard and Crew GreenHab Officer Adriana Sanchez setting up the EMF meter and taking a soil sample (right), EMF meter data from EVA 6, with the highest f10.7 index of 258.5 relative to EVAs where magnetic data was taken (left).

Title: Waste Management Solutions for Space Habitats: Utilizing Mycoremediation
Author(s): Adriana Sanchez
Objectives: Advancing the technology readiness level (TRL) of Mycoponics™ technology by accessing transportability, and survivability of blue oyster fungi (Pleurotus ostreatus var. columbinus).
Final Status: The TRL of Mycoponics™ is a presently at 6 and continuous improvements of the chambers will allow us to preform our first prototype demonstration in a space environment. Excaudate samples collected during the mission will be tested for potential contaminant as well as nutrient concertation to determine the rate at which mushrooms were consuming liquid media.

Title: Fabrication of photovoltaic cells using semiconductor material gathered In-Situ.
Author(s): Jesus Meza-Galvan
Objectives: Gather iron fillings and iron-oxide containing minerals from the environment to use as semiconducting material to fabricate a rudimentary solar-cell.
Final Status: Soil samples were collected during EVA to analyze their iron content. Most samples showed only minute traces of Iron. Altogether, only 0.2 grams of magnetic minerals were collected from 9665 grams of soil. This was not enough to perform the controlled oxidation experiments to create semiconducting FeO that was planned for the mission. Devices were made using hematite powder (Fe2O3) processed from concretions found on top of HAB ridge, which produced between 0.2 Volts and 0.7 Volts. However, the devices did not seem to not be photo-sensitive, indicating the devices made were not solar-cells, but instead some sort of chemical battery, perhaps driven by a reaction between the hematite powder, the iodide solution, or the copper electrode. All devices made had lifetimes no longer than 5 minutes, as the hematite layer quickly dissolves into the iodide solution. To improve the devices, a binder must be added to the hematite powder to maintain the layer integrity against the liquid redux mediator.

A collage of different objects Description automatically generated
Figure 5: a) Hematite Concretion collected from HAB ridge. b) Ground hematite powder believed to be composed of primarily Fe2O3, a semiconducting material that can be used for photo-sensitive cels. c) Top electrode of a photosensitive cell using hematite powder as the active layer and a copper strip for electrical contact, and bottom electrode using aluminium as the electrical contact and over the counter iodide tincture as a redux mediator. d) Full device connected to a voltmeter showing the cell produced 0.654 Volts.

Title: Sensor-based Team Performance Monitoring in Isolated, Confined, and Extreme Environments
Author(s): Ryan Villarreal
Objectives: To take team-level measurements of team dynamics in isolated, confined, and extreme environments.
Final Status: All physiological data and puzzle tasks sessions was successfully completed for analysing team-level physiological response to isolated, confined, and extreme environments. Analysis will begin upon returning to Purdue, where greater computational resources are available.

Title: EVA Crew Monitoring System
Author(s): Keegan Chavez
Objectives: The project will extend the MDRS Monitoring System project to include a network of Raspberry Pi’s to measure and record crew member biometrics while on an EVA, specifically body temperature and CO2 levels.
Final Status: One hardware prototype was developed; however, calibration of sensors is still needed. As monitoring human biometrics, an approved IRB is needed for testing on EVA. Further, a method for fixating the main helmet board during EVA is needed.
AD_4nXcwbVl9n87I0-pOJNOj_zFrAG0bK79VSUGUVoT3ngTet57PKe7sJM8W5O7u_d-u-RWf7tBTo3NZuoRcUAtrv1yQ74erhjkxJxVUL0lXzfOMxz6JCClCRIkG68uktfo-i2xzma9i5jHTolcQrqHz3eQ?key=J05YFPp3N4Sa0Tt6XP-20KW2
Figure 6: Placement of the CO2 Sensor and Temperature Sensor (left). Completed EVA suit CO2 and Temperature monitoring system (center). Wiring schematic (right).

7.
Title: Wearable-Based Autonomic Profiles for Real-Time Cognitive Monitoring in Spaceflight
Author: Peter Zoss, Ryan Villarreal
Objective: This study will longitudinally quantify individual changes in autonomic nervous system (ANS) status via a wearable sensor in MDRS crew members to understand how our autonomic activity is associated with sequential measures of cognitive performance for predictive model development.
Final Status: All physiological data and Cognition Battery Tests were successfully collected and administered for analysis once back at Purdue where more computing resources are available.

Mission Summary- December 20th

Mars Desert Research Station

Mission Summary

Crew 305 – Valles

Dec 8th, 2024 – Dec 21st, 2024

Crew Members:

Commander and GreenHab Officer: Hunter Vannier

Executive Officer and Crew Geologist: Ian Pamerleau

Crew Engineer: Spruha Vashi

Crew Scientist: Monish Lokhande

Health and Safety Officer: Peter Zoss

Crew Journalist: Rashi Jain

AD_4nXfHxOpgYmoEUfJwZhkYarSPIAiot7Y4j0S78PNzNPrvof_37AdngoxlY_hYkZaiycWqP-jeGNO5ObM_CY2sPKsm3aedgG3XQIbW2PxV64njaWSd-kMbYIlSM10pXnTNadcUNuJT?key=UDBElswbanx1w2tkCIONab5X

Acknowledgements:

The MDRS 305 crew would like to express their gratitude to the many people who made this mission possible: our deepest thanks to Dr. Robert Zubrin, President of the Mars Society; Sergii Iakymov, MDRS Director, who assisted us with planning and answered many questions in the months prior to the mission, along with support at the end of our mission; Ben Stanley (and Jules), MDRS Analog Research Program Director and David Steinhour, MDRS Site Manager for being invaluable as Mission Support during the mission and addressing both large and small problems during our stay; Mike Stolz for patience and consistent communication regarding media relations; Russ Nelson for preparing us for emergencies; Scott Davis for EVA suit support; James Burk, Executive Director; Peter Detterline, Director of Observatories; Bernard Dubb, MDRS IT coordinator; Dr. Kshitij Mall and the Purdue Mission Support staff; the Purdue faculty who greatly helped us in the selection process of Crews 305 and 306 (Valles and Montes); all the departments and people at Purdue University who supported this mission; and all the unnamed people who work behind the scene

to make this effort possible, and who gave us a chance to be an active part of the effort towards human exploration of Mars.

Mission description and outcome:

MDRS 305 “Valles”, twin of mission 306 “Montes”, is the eighth all-Purdue crew at MDRS. The mission was characterized by excellent research quality that was diverse yet compatible with one another. We had a high level of performance from a professional and a personal perspective. The diverse crew included two women and four men, and represented three countries (United States, India, Canada) as well as various departments at Purdue. Crew 305 is an all-student crew (undergraduate student, PhD students and candidates), showcasing the strength of Purdue student-lead research in the field of space exploration.

Crew 305 performed a wide range of research tasks with a strong geological and human-machine compatibility focus that regularly led to collaborative research efforts, a primary Crew 305 theme. EVAs led crew members to areas of MDRS that yielded numerous high-quality geologic samples and scientific data collection. Crew members were able to observe EVA activities and leave with a better understanding of how machines can be effectively used to help astronauts on Mars. Engineering, health tracking, and botany experiments concerned with Mars exploration were also successfully conducted, including how MDRS operations affected the health and well-being of the crew during versus prior to the mission. The privilege of sending two Purdue crews back-to-back is not lost on us, as multiple experiments will live on during the Crew 306 “Montes” mission to follow.

MDRS’s unique analogue environment and robust campus was both impactful and relevant for Crew 305, as almost every building was in use during the mission. Much of the research conducted here would not have been possible in typical terrestrial environments or in college facilities. This work will directly contribute to PhD dissertations and future conference presentations that, in turn, will no doubt spread awareness about MDRS missions and foster awareness and passion for space exploration.

Mission description and outcome:

MDRS 305 “Valles”, twin of mission 306 “Montes”, is the eighth all-Purdue crew at MDRS. The mission was characterized by excellent research quality that was diverse yet compatible with one another. We had a high level of performance from a professional and a personal perspective. The diverse crew included two women and four men, and represented three countries (United States, India, Canada) as well as various departments at Purdue. Crew 305 is an all-student crew (undergraduate student, PhD students and candidates), showcasing the strength of Purdue student-lead research in the field of space exploration.

Crew 305 performed a wide range of research tasks with a strong geological and human-machine compatibility focus that regularly led to collaborative research efforts, a primary Crew 305 theme. EVAs led crew members to areas of MDRS that yielded numerous high-quality geologic samples and scientific data collection. Crew members were able to observe EVA activities and leave with a better understanding of how machines can be effectively used to help astronauts on Mars. Engineering, health tracking, and botany experiments concerned with Mars exploration were also successfully conducted, including how MDRS operations affected the health and well-being of the crew during versus prior to the mission. The privilege of sending two Purdue crews back-to-back is not lost on us, as multiple experiments will live on during the Crew 306 “Montes” mission to follow.

MDRS’s unique analogue environment and robust campus was both impactful and relevant for Crew 305, as almost every building was in use during the mission. Much of the research conducted here would not have been possible in typical terrestrial environments or in college facilities. This work will directly contribute to PhD dissertations and future conference presentations that, in turn, will no doubt spread awareness about MDRS missions and foster awareness and passion for space exploration. Figure 1. MDRS 305 Crew posing in front of the habitat. Left to right: Executive Office and Crew Geologist Ian Pamerleau, Health and Safety Office Peter Zoss, Commander and GreenHab Officer Hunter Vannier, Crew Journalist Rashi Jain, Crew Engineer Spruha Vashi, and Crew Scientist Monish Lokhande.

It has been a pleasure to be commander of this crew, which successfully completed a wide variety of high level research while sharing many laughs along the way. I was particularly impressed by the empathy and major effort crew members committed to help fellow crewmates be as successful as possible with research,

which included a 4-day soldering, wiring, and coding saga. We experienced significant technical challenges, but everyone took immediate action and worked the problems together. At MDRS, the crew properly followed safety and research protocols, performed as a tight group, and used their time productively. Crew 305 expressed genuine interest in learning about the diverse backgrounds and research interests represented by the group, which made for a more meaningful and fulfilling experience.

Figure 1. MDRS 305 Crew posing in front of the habitat. Lef to right: Executive Office and Crew Geologist Ian Pamerleau, Health and Safety Office Peter Zoss, Commander and GreenHab Officer Hunter Vannier, Crew Journalist Rashi Jain, Crew Engineer Spruha Vashi, and Crew Scientist Monish Lokhande.

It has been a pleasure to be commander of this crew, which successfully completed a wide variety of high level research while sharing many laughs along the way. I was particularly impressed by the empathy and major effort crew members committed to help fellow crewmates be as successful as possible with research,

which included a 4-day soldering, wiring, and coding saga. We experienced significant technical challenges, but everyone took immediate action and worked the problems together. At MDRS, the crew properly followed safety and research protocols, performed as a tight group, and used their time productively. Crew 305 expressed genuine interest in learning about the diverse backgrounds and research interests represented by the group, which made for a more meaningful and fulfilling experience.

Summary of ExtraVehicular Activities (EVA)

After being trained in the use of rovers and in the safety protocols for EVAs, the crew had twelve excursions during rotation 305. Two of which were the traditional short EVAs to Marble Ritual, and the remaining EVAs were aimed at gathering data, samples, or observations for one or more crew members’ research. The EVAs reached locations that featured ephemeral streams for measuring and/or paleosol for sampling. Observations were also taken on how machines could aid astronauts taking data in the field. EVA teams thoroughly explored the regions in Candor Chasma, Eos Chasma, southeast of Kissing Camel Ridge (KCR), and east of Hab Ridge (Fig. 2).

While the EVA team was in the field taking data, the rest of 305 were still involved in the EVA. Every Crew 305 member would meet in the lower Hab about 30 minutes before the EVA began to help those gearing up get ready and enter the airlock (and always took airlock photos). During the EVA, in addition to 45-minute check-ins, the comms team back at the Hab would take notes on the EVA team’s movements including time they parked the rovers, time they began the return trip to the Hab, and any additional information. This information was logged in an EVA spreadsheet that we are leaving as a template for future crews to use. The comms team also was able to use the GPS trackers on the EVA team to help them find their desired location in real time. The comms team was able to advise the EVA team on an accessible route into Eos Chasma during EVA 05. Overall, Crew 305 had a very safe and successful time in the field for multiple crew members’ research projects.

Table 1. Summary of EVAs, indicating Sol of execution, the destination of each EVA, time spent walking and taking measurements/ samples/observations, total time, walking distance, and total distance.

EVA

Sol

Destinations

Walking & Activity Time (h:mm)

Total Time (h:mm)

Walking Distance (km [miles])

Total Distance (km [miles])

1

1

Marble Ritual

0:45

1:00

1.32 [0.82]

1.87 [1.16]

2

1

Marble Ritual

1:00

1:15

1.48 [0.92]

2.03 [1.26]

3

2

Candor Chasma

2:45

3:05

3.25 [2.02]

6.25 [3.88]

4

3

Compass Rock/ Candor Chasma

3:10

3:45

4.63 [2.88]

12.08 [7.50]

5

5

Eos Chasma

3:10

3:30

5.41 [3.36]

10.95 [6.80]

6

6

Eos Chasma

2:15

2:45

2.93 [1.82]

11.15 [6.93]

7

7

Zubrin’s Head/ White Rock

Canyon

2:15

2:55

4.46 [2.77]

11.58 [7.20]

8

8

Hab Ridge/

Zubrin’s Head

2:55

3:25

4.42 [2.74]

11.54 [7.17]

9

9

North of Hab

1:25

1:25

2.22 [1.38]

2.22 [1.38]

10

10

South KCR

1:45

2:15

2.40 [1.49]

6.72 [4.18]

11

11

East Zubrin’s

Head/White Rock Canyon

3:25

2:55

3.42 [2.13]

12.92 [8.03]

12

Total

12

Compass Rock

1:15

26:05

1:40

29:55

1.24 [0.77]

37.18 [23.10]

7.96 [4.95]

97.27 [60.44]

AD_4nXdH0BZ174DcQvdKGTqUWEDzCnyf9aZPVdBoApbgwwH7yzjF5ZdZUXdy75MQcW-OLyW1LpAe00zjvVsDu5pIGnLHI_WUd4AEHn_gTQYvIIZx4W5jbWG00XOWTsd-K9G45gvYc8LF?key=UDBElswbanx1w2tkCIONab5XFigure 2. Satellite map of the three regions explored by Crew 305 – Valles. There were 3 EVAs spent in the drainage basin of Candor Chasma (purple pins), 2 in the drainage basin of Eos Chasma (blue pins), and 4 in the drainage basin Southeast of Kissing Camel Ridge (green pins).

Summary of GreenHab Activities

Crew GreenHab Officer: Hunter Vannier

It was truly a pleasure working in the GreenHab and learning how to most efficiently care for its residents, which are all happy and healthy. During the mission, the cucumbers were the most dramatic and required twice-daily watering to prevent wilting. Many cucumbers have appeared over the past two weeks, though they are not mature enough to indulge in before our departure, and cherry tomatoes appeared on our last afternoon. The greatest change to the GreenHab was the transplanting and thinning of tomatoes. Now each pot only has one tomato to ensure healthy growth, proper fruiting, and to improve current and future water efficiency. Two raised beds were refreshed with new soil and planted with six different types of microgreens. These will also have to be enjoyed by future crews. The crew was able to enjoy almost daily use of crops in meals, including sauteed arugula, carrot green salad, regular use of cilantro in a variety of meals, and basil, thyme, and parsley in spaghetti sauce. On our final day, we even got to harvest a cucumber. Aside from the general care of the GreenHab, I was able to successfully carry out a soil moisture monitoring experiment to improve water efficiency for the growth of microgreens (see below in Science Summary section). Below I will share a watering schedule for the current set of crops.

Recommended watering schedule: tomatoes, distribute 2-3 gallons among tomatoes every 2 days; cucumbers, 1 gallon in the morning and 1 gallon in evening; raised microgreen beds, 50 oz per morning; radish and carrot bin, ½ gallon every 3 days; herb raised bed, 1.5 gallons every 5 days.

Science Summary

We had 7 separate projects that covered a range of topics. Some of them were EVA-related, while others were conducted at MDRS campus. Overall, each project uniquely highlighted each crewmember’s strength and expertise, and expanded scientific, engineering, and human factor knowledge to support crewed exploration of Mars.

Research Projects:

1.

Title: Hydraulic Geometry of Ephemeral Streams to Potentially Elucidate Paleoclimate Author: Ian Pamerleau

Description, activities, and results: Ephemeral streams are present around the MDRS campus and carve out the landscape after heavy rain. The hydraulic geometry of these streams mathematically describes how the width and drainage area change as the flow moves up- to downstream. There is a range of values that the hydraulic geometry of rivers tends to fall within, which tells us more about climate, lithology, and sediment load. These values have been established for the more “mature” rivers with constantly flowing water. However, the ephemeral streams at MDRS may not have achieved the values present in the literature. I will test if the ephemeral streams of MDRS hold the same hydraulic geometry in the literature, and if it is able to tell us anything about the climate.

We were able to thoroughly explore the three major areas where I wanted to take stream width measurements: Candor Chasma, Eos Chasma, and the region southeast of Kissing Camel Ridge (KCR) (Fig. 2). My objective was to take measurements of branching tributaries and between said tributaries along a main channel because the drainage area of a channel will substantially increase when the area of another stream is added. We also took three measurements of the stream width at each location a meter or so apart from one another to get an average width of the location.

I have not been able to create a plot of my data yet and am still in the processing stage. The trend I expect to see (i.e., smaller drainage area locations yield smaller stream widths and larger drainage area locations yield larger stream widths) will likely hold based on my observations and preliminary processing. The data may become a bit more complicated when comparing two sections of high drainage area, however, as there seemed to have been some variability in different factors such as lithology, slope, vegetation, etc.. I tried to limit these factors based on the location I chose but it is impossible to fully eliminate them, but I have taken photos of each location we took measurements of to better analyze any anomalies. I will hopefully be able to discuss these results with my undergraduate research advisor (whom I have worked on a geomorphology project with) or a geomorphologist/hydrologist at Purdue and share my findings at a conference once the analysis has been completed.

2.

Title: Effect of Variable Soil Moisture on Microgreen Growth

Author(s): Hunter Vannier

Description, activities, and results: Efficient plant growth is an important element of life at MDRS and will be critical for sustainability if we want to create a self-sustaining presence on other planetary bodies. For this project, I aimed to conduct an experiment that investigated how soil moisture content affects microgreen growth to find efficient watering practices. The established GreenHab infrastructure at the Mars Desert Research Station is an ideal place to conduct this experiment.

Experimental setup: I filled four 3” x 3” potting containers with Miracle Grow potting soil available in the GreenHab. The soil required priming and mixing with water, so the pots started out with some moisture level. In each of the pots, I added 1 g of broccoli microgreen seeds, then covered with a thin layer of soil. Each morning, I would water each pot with a specific quantity of water. Pot 1 received 2 oz water, Pot 2 received 1.5 oz water, Pot 3 received 1 oz water, and Pot 4 received 0.5 oz water. Pot 5 was a control pot and received no water over the duration of the experiment to determine if the ambient moisture conditions in the GreenHab were sufficient to stimulate growth without watering. The soil moisture monitoring system consisted of four capacitive soil moisture sensors (one for each pot) attached to an Arduino Uno R3 microcomputer (Fig. 3). Two measurements were taken in the morning, one prior to watering and one after, and one measurement was taken in the evening via direct connection to a personal laptop while running an Arduino serial monitor code. An initial baseline reading for each was obtained a day after the soil was primed

(prior to seeding). I waited a day after priming to equilibrate the moisture content for each pot. Subsequent measurements were subtracted from these base values for the respective pots.

AD_4nXf1Ke4qlYlkSJfFNiIFrFjE0fxf_yfumwJKdFpZT6a3vDotUh97jPW6aeoSPI6XKvALSQj5YHTK2iDAscHRrHNrlluFHQkyy7JKX_ZqKrRCB4toHFKy0pihkwNm4zmofmlngJRNNA?key=UDBElswbanx1w2tkCIONab5X

Figure 3: The soil moisture monitoring setup. The Arduino Uno is shown in the bottom left of the image, and soil moisture sensors are shown in each pot, labelled 1-4. The image is from the final afternoon of the experiment, December 20. One can see how similar the microgreen growth is in Pots 1-3 despite receiving significantly different water quantities. .

Results from the experiment are shown in Fig. 4. The first day of watering occurred on December 16. Initially, each pot was near the baseline value after the first watering except Pot 1 (2 oz). The 2 oz of water may have been sufficient to saturate more of the soil compared to the other pots. However, by the evening the pots had once again equilibrated. On the morning of Day 2, a sinusoidal pattern developed that persisted for the duration of the experiment, but the moisture of each pot seemed to reach a stable pattern on Day 3 (December 18). Pot 1 (2 oz) displayed the most significant change in soil moisture between morning watering and evening, and it maintained consistently higher soil moisture content than Pots 2-4. Interestingly, the pots ranging from 0.5 to 1.5 oz tend to have somewhat similar soil moisture content, each significantly lower than Pot 1 (2 oz). Pot 4 (0.5 oz) often has a higher soil moisture content than Pots 2 and 3, which is unexpected and may be due to a higher concentration of water being deposited near the sensor when watering, or a slightly different sensor depth. In general, the pots lose moisture at a relatively constant rate during the day and evening. Based on the sensor data alone, it seems that 0.5-1.5 oz of water could achieve similar soil moisture. However, most of the moisture could have remained in the top few cm of soil for Pots 2-4. This is in contrast with Pot 1 (2 oz) where water seemed to consistently saturate more of the soil and to a higher degree. This is an important result because microgreens have shallow roots and can be sustained by soil

moisture content at the surface rather than at depth. Therefore, I conclude that 2 oz of watering for these pots is more than needed to grow the microgreens.

AD_4nXcwJIjvV4RgC7RSGhoRgJ7L8tDUeWW1w6dB6p9bsps4onYNl-nm11nbDAdlUcvugV-WAG24YIb-2ch510wDhyAAB2s8rwfKxDyfPZDOZq2oXLNb9Xg_89BkYMEqXZNN_nKi72h1NA?key=UDBElswbanx1w2tkCIONab5X

Figure 4: Sensor data from the soil moisture monitoring station. The y-axis shows soil moisture values, and the x-axis shows the time of day when measurements were taken. Each colored line represents one of the pots: blue is Pot 1 (2 oz), Pot 2 is green (1.5 oz), grey is Pot 3 (1 oz), and Pot 4 (0.5 oz) is orange. There is a gap because data was not obtained for the Dec. 18 post water measurement.

This assertion is supported by observational evidence of microgreen growth (Fig. 3). The microgreens were first observed to sprout on the evening of December 19. Pot 1 (2 oz) clearly had 4 to 5 times the growth observed in Pot 2 (1.5 oz) and Pot 3 (1 oz). By the morning of December 20, Pots 1-3 clearly had microgreens occupying most of the pot; Pots 2 and 3 had similar amounts of microgreens, and about ¾ that of Pot 1. Pot 4 showed signs of soil disturbance caused by sprouting but the microgreens had not penetrated the surface of the soil. Based on the observed growth rates and soil moisture content, I conclude that 1 oz of water per pot is the most efficient watering practice for the broccoli microgreens. Pot 3 (1 oz) achieved a similar growth rate as Pot 2 (1.5 oz), and though it did not sprout as quickly as Pot 1 (2 oz), a similar level of growth was achieved by the end of the experiment with half the amount of water. A future experiment could be to first saturate each pot with variable amounts of water, then add a similar amount of water to each to see if a larger initial watering could stimulate growth and enable less subsequent watering.

To translate these results to the GreenHab, we can compare the pots to the raised beds that can be used for microgreen growth. The beds are 33.5”x 13” for a total surface area of 435.5 in2 and the pots are 3”x 3” for a surface area of 9 in2. Assuming the same depth, this means ~50 pots would fit in the raised bed, and that to efficiently water the bed it would take 50 oz per day. Throughout my time at MDRS, I have been using at least ~64 oz of water per day for one of these beds and sometimes an additional 30 oz. At minimum, my experiment supports that I could improve efficiency in raised bed watering by ~22%, a significant improvement. I would recommend 50 oz per day for future crews growing microgreens in raised beds. There may be changes in evaporative rates between the beds and pots which should either be calculated or tested.

3.

Title: Sampling Paleosol Sequences for Mars Comparison

Author(s): Hunter Vannier

Description, activities, and results: The goal of this project was to collect samples from at least one exposed paleosol sequence with the intention of bringing it back to Purdue University for spectral and microscopic analyses. Paleosols have been proposed to have been observed on Mars via rover data, and little work has been done to understand their role in sedimentary recycling and retention of past water on the Mars surface. Three paleosol sequences were collected (15 total samples) that represent tens of millions of years of history in the MDRS region. The first two sets were collected on Sol 3 in the interior and just outside Candor Chasma (Fig. 5). The third was collected near Zubrin’s head. Complimentary to the Crew Geologist’s work, river channel sediments were also collected at different locations across MDRS (7 total) with the aim of understanding how paleosols are recycled in the fluvial systems at MDRS, and how composition changes spatially across the field areas.

AD_4nXeAeUquebG3dEygFsGhkd0tICd051yM2BV447GqQU7mPbEm-ZNp_mKJxuV1E9uKXS1i_AGtev3z4RAjqg_Hjt27VRnlbct2ws4yF_zLJaoBEl9lIcvzNclBcooVkdUXEDfCZLaQpQ?key=UDBElswbanx1w2tkCIONab5XFigure 5: Example paleosol exposures observed during EVA 03 in Candor Chasma. Numbers indicate sampling locations within the paleosol sequence. (a) Paleosol sequence ~300 m after the entrance to Candor Chasma. Darker-toned layers indicate higher concentrations of organic material and are consistent with changing water environment. Capping rock is a

conglomerate and sandstone of the Morrison Formation (b) Paleosol sequence just exterior to the Candor Chasma entrance. Note the significant amount of red color compared to (a), indicating a much higher concentration of iron oxides. Cap rock is a fine-grained sandstone that is commonly exposed at ground level through the Compass Rock area.

The samples collected at MDRS will be analyzed in the pursuit of improving our understanding of paleosols on Mars and their relationship to variable climates on Mars. Visible to near infrared spectra, X-Ray fluorescence, and X-Ray diffraction data will be collected to form a preliminary data set to improve context for Mars observations. This data will likely be published at a conference in the next year. This data will also be the basis for a future NASA Solar Systems Working proposal to investigate the MDRS paleosols and river systems in greater detail.

BONUS: we came across sedimentary concretions that are documented in the MDRS Geology Unofficial Handbook. These are very similar to outcrops recently observed in Jezero Crater by the Mars 2020 Rover. See Figure 6 for a comparison.

a

c

AD_4nXdp1e1R7jM9_b6Q1HrLJNAJTC2XYWe5CLhhOHeaaQ48N-EFtjkyGt8TBwKEtNLzr10TvZa0DLqGbLV0wSBdiTxyZxNxSpylb0BWq0qU09FzSFAQwfM3UjB19s5bjUQoZt1nTH81?key=UDBElswbanx1w2tkCIONab5Xb d

Figure 6: Comparison between concretions at MDRS and on Mars. (a,b) Sandstone concretions in the fluvial channel near Zubrin’s Head. (b,c) Concretions observed by the Mars 2020 Perseverance Rover in Jezero Crater near the Bright Angel formation around Sol 1022 (Courtesy Adrian Broz; publicly available images from Mastcam-Z).

4.

Title: Investigating Rover Applications in a Mars Analog Environment

Author(s): Spruha Vashi

Description, activities, and results: The objective of this work was to build a modular rover that can traverse the analog Mars terrain along with crew members on EVA. Testing at MDRS was set to include mobility testing over different sections of terrain, confirming communications and operability, and exploring human-machine teaming capabilities. However, after multiple long days of group efforts at assembly and troubleshooting, the rover, named Hermes, was unfortunately unable to start and be ready for data collection, but is pictured in Figure 7. While this outcome was unfortunate and meant that Hermes could not be tested outside on EVAs, it provided a good insight into major improvements in assembly that can be applied for future testing. Understanding the complex system and its weakest points of failure was not lost, and this information now allows us to ensure a smoother assembly process in future usage.

AD_4nXfZUg-Wh08ej3o2GNaNJaESKQwg7K1XHwmaJ3a_9z2ZN1Sm5hRAPZc3ebpzT6UXGcx0fMb1spMdl3bnvxPlw65K6VnZUrsGkitSJfkinYds35SMiVcugpCXqE5aadoyzYH7NhU_uQ?key=UDBElswbanx1w2tkCIONab5X

Figure 7: Hermes the rover, with electronics and wiring included. Expected weight is 25 pounds, and expected maximum speed is 1.6 meters per second.

Although Hermes was not utilized on EVA, data and observations were still collected to help understand applications of rovers in the analog environment, especially in scenarios where the rover would act as a member of the EVA team. Some main points of investigation were mobility, functionality, communications, teaming strategies, and future design. For mobility, a single tire was taken out on EVA and tested on multiple different terrain types to understand its ability to travel across different terrain. Since the Crew Geologist’s research was primarily working with stream beds, most terrain testing was conducted on or near stream beds to understand the scenario in which the rover would be travelling along with the team while collecting stream bed data. The testing was done by rolling the single tire across 10ft strips of terrain multiple times, with the same downward pressure applied while rolling to simulate the actual rover’s 25lb weight, as seen in Figure 8. The results showed no more than 5 mm of tread depth in the softest terrain tested, compared to 200 mm footprints. In stream beds, the tires showed a clear tread but when hitting denser patches required more effort to get past. On dry and rocky lands, the tires showed no tread but rolled smoothly over different sizes of small rocks. It is still uncertain and unlikely that the rover would be able to traverse across very rocky, winding paths.

AD_4nXdiqt8N82wkuiZlumOLqViU2UjtUz3ZA8C2OQnPYiLNsfeK8ZPa8gq5wexFqS5HEgsy3ac2-5wnp8n-u68u6ewcL17Tt5IJ9Auuejtvk-NYgu7QbW8BvW5i1M3IW_3GWuiSjr2Ehg?key=UDBElswbanx1w2tkCIONab5X

Fig. 8: Image of terrain testing in a stream bed. Three strips of 10ft were identified and marked with flags and the tire was rolled along all three. Tire tracks are seen at each line, note that the found was denser in the center line and thus there are gaps of tracking since the tire slipped at those points.

To understand the functionality and teaming strategies that the rover could possibly adopt once it is functional, qualitative observations were made on certain aspects of data collection that delay operations and could be eliminated with the presence of a rover. For example, it was observed during the Crew Geologist’s stream bed measurements that the travel bag of materials is a hindrance to carry. It was noticed that writing down geological information, data points, and GPS information all takes time, and some of these items can be noted down by an autonomous system that is present, in this case, a rover. On EVA 11, the Crew Geologist was timed while he was taking measurements to understand his efficiency and points of improvement. On average, there was a reduction of about 1 minute of time from the Crew Geologist taking the measurement entirely by himself vs. having an EVA team member help with the measurement. While this confirms the idea that an EVA team will make data collection more efficient, the important note is that regardless of the number of members involved, data recording took 30-45 seconds for every measurement. Data recording was assumed to include notes on geological information, data points, and GPS information. All these items can be autonomized with a rover on hand that can collect and store the data and simplify the measurement process for the crew members. Another point of investigation was the time it takes for the rover to travel alongside a crew member. The specifications of Hermes indicate that its maximum speed would be about 1.6 meters per second, or approximately 3.5 miles per hour. Although Hermes was not actively tested, a measurement was made of comparing a crew member traveling from one data collection point to another at normal walking speed vs a crew member walking at specifically 3.5 mph (estimated to be 2 strides per second). The delay of a travelling rover was found to be 31 seconds and would also be further delayed in the case that the stream bed is very rocky, meaning it must travel on the outside, flatter areas.

The observations made on EVAs clarify future design upgrades of the rover. For example, communications and data recording capabilities, as well as carrying capacities would be the most ideal additions to Hermes at the time. It is hoped that with future usage of Hermes, more scientific applications can be implemented, and the rover can be well versed to work with many different variations of data collection and support the

crew’s research ambitions. Future observations of Hermes in action working in a team of scientists can further identify failure and improvement points for teaming strategies of autonomous systems and astronauts in analog environments, the Moon, Mars, and beyond.

5.

Title: MDRS Monitoring Overlay Sensors

Author(s): Monish Lokhande

Description, activities, and results:

Description: The project was focused on developing a network of Raspberry Pis To measure data from various locations in the habitat to measure the necessary sensor data (CO2, VOC, Air Quality, Temperature and Humidity). This data would be collected and analysed for any possible sudden changes. The “Sensor Packs” would be made to operate independently on batteries.

Activities: A total of two sensor packs were developed inhouse were placed in GreenHab and Lower Hab to continuously monitor the temperature, humidity and CO2 levels. The sensor packs relay the information in the two different types of feeds: Local and Global. The local feed updates every minute to provide real-time data to the crew members in the habitat and can be used by the local crew members to monitor the health of a certain location in the HAB. On the other hand, global feed is used as a transfer of necessary information to a remote ground station. The feed is designed in such a way that it considers the delays inherent in Mars-to Earth communication. To limit the consumption of bandwidth and latency effects, the global feed by default parses the data and sends only the necessary data at regular intervals when everything seems within acceptable range of values. The continuous relay of data for global feed is done when there is a sensor which is not functioning or has faulty values. The sensor modules have the dual functionality to power using battery packs or by a wall power source. This makes it possible to be located at any location in the habitat.

Limitations: The sensor modules had a limitation on the number of sensors because of limitation of data to be published. The CO2 sensors needed calibration to have a reference for correct value calculation and therefore the values had a higher fluctuation.

Results: The sensor modules developed actively monitor data from the GreenHab and Lower Hab successfully. The local dashboard image is given as a reference, which populates with data every minute. If

any sensor has faulty data, there is a corresponding notification sent to the local and global dashboards. Having local and global dashboards help crew members quickly analyse any faults as well as inform the remote ground station of any anomalies that might have occurred. Future applications will include adding a notification in the form of sound or LEDs, to alert which sensors are not working or giving not acceptable values. Another extension will be to include more sensors. The project is being continued by Crew 306 for their research.

AD_4nXedpaHfPgBDDMJXgP3dinZtQybZiPz7w7Sl2N2Yd1t96ZiuFHGbOU6NlQ7gB3CP4gaoshlHbo-ZztFeZx9vTr11HEo0OOprP-A4pKEaTPj1RGcdkBuJqYUJ6XtX9iBvAiq8-0yQvA?key=UDBElswbanx1w2tkCIONab5X

Figure 9a. Local Data Feeds for individual sensors

AD_4nXf1Tp781UQpRTQI7Oio10Cr_DZHH2X_dqyxwxDIXej4I0vrtxwEgpaxFHOjrbr3PFnAuHIbgxRaFiyGriKuoK0OBb2AGu01X-ccrl8GAjhslush30pk2PjeOQkOcGSQviozAugs3w?key=UDBElswbanx1w2tkCIONab5XFigure 9b. Local Dashboard for sensor information

6.

Title: Safety Lessons and Design Requirements on Autonomy for future Martian Habitats Author(s): Rashi Jain

Description, activities, and results:

Description: Mars will have both periods of dormancy and crewed operations. Therefore, future Martian habitats must integrate autonomous systems and design practices that ensure reliable and safe operations in both operational phases of the Hab. The objective of my study is to understand how the different systems work together in a Habitat, identify weak design points and practices, and recommend safety controls and design requirements for future autonomous systems that can ensure both quick decision-making and resilient and safe habitat operations.

Activity: For this, I am studying MDRS habitat design and operations during the 12 Sols that we have at the Mars Desert Research Station from December 8th, 2024 – December 20th, 2024 to: (i) identify and draw out the functional relations between different systems in the Habitat, (ii) analyze how effective are the Habitat systems at maintaining or providing resilience to the anomalies and faults that we face during the mission.

Results: In this report, I include the results from Sol 1 – Sol 6 operations. I am still working on processing the data from the remaining six sols. For Hab, I include results only from Science Dome and the EVA operations. I am still working on processing observations made in the Main Dome, Green Hab, Repair and Maintenance Module, the Tunnels, and the Airlock.

Habitat Design

I toured each section of the Habitat and documented the different design features and resources available in each of those sections. The purpose for this exercise in each Habitat section is to understand the different resources available in each dome and what they enable us to do. It helps us (i) analyze how can or can the equipment and resources available to us both locally in each dome, and throughout the Habitat help us navigate anomalous situations, and (ii) are the current design and resources adequate to interface with autonomous systems? What, if any, should be the design requirements for future robotics or autonomous systems?

This step led to Habitat Systems Functional Relations

Habitat Systems Functional Relations

Relations between different habitat systems at MDRS. The different systems in the Habitat can be categorized into the following seven: power; interior environment; environmental control, life support system, and extra-vehicular activity, food processing, structure, command, control, and communication; and human, robots/safety controls. Here we show only power, but during the time at MDRS these models have also been sketched out for extra-vehicular activity, interior-environment, and command, control, and communication. I am still working on putting together models for other systems listed.

Power System: Figure 10 shows the power system component architecture and relations at the MDRS facility. There are two main sources of power, the solar panels (primary source) that are supposed to generate power and charge the batteries during daylight, and the backup generator (secondary source) that is to provide electricity in case solar panels malfunction, or the batteries run out of charge. Power generated through solar arrays, or the generator goes through a Sequential Shunt Unit integrated within the system which regulates the voltage of generated power. It then goes through a Direct Current Switching Unit (DCSU) which is the first component in the power distribution system. The DCSU determines power flow: i.e. how the power is distributed based on power generated and the integrated algorithm. DCSU interfaces with the batteries using a Battery Charge Discharge Unit (BCDU), whereas it interacts with the downstream loads using Main Bus Switching Unit (MBSU), DC to DC converter unit, that converts voltage to 120 Vdc, and Remote Power Controller Module (tripper box).

AD_4nXe6NcjbCFh-jQtU5ut1XGli-37DxCd2abUxbv-Kd_pcQI25Nl1sZDFGzlM8bZfSD1KJp9IjrQ1EHe3ih9KQyUwbLzN6iaikXWQozDIkxYaP4IqfQRhs-j758IzxUfnTccyISLG5xw?key=UDBElswbanx1w2tkCIONab5X

Figure 10: Power System Component Architecture and Relations at MDRS

With this power system component architecture and relation diagram at MDRS, we built a functionality diagram for individual components. Functionality diagrams are causal relation diagrams that show what the function of each component in the system is and what are the different factors it’s affected by. Figure 11 shows the functionality diagram of the solar panels. The grey circle represents the component itself (solar panel), the blue circle represents the function (generate power), the black circles represent the other systems in the Habitat system that affect either the component or its function (in this case we see that solar panel functions are affected by heating/cooling systems), the yellow circles represent variables and any other factors that influence the component’s function (in this case the solar irradiance affecting the power generative capacity).

AD_4nXdv7fPYmsMD2dHVxrJmGwYBB1-BcQU5pUGecNyzycSUIory2JpAUqNn8xUIff0Xu7qQ5apxYBd7L5sFex72KVln7gEw1ddfQp_uGb1c23kS2ipL2ubM2FJNfoQjg8FCDzdBw6ux3A?key=UDBElswbanx1w2tkCIONab5X

Figure 11: Functionality diagram for Solar Panels

Using these functionality diagrams, we place “T” variables, also known as test variables. These T variables inform the design of where future monitoring systems should be placed. For instance, in case of a solar power, we recommend placing the

Operations summary: I monitored Hab operations, resources usage, and supplies through the 12 Sols and organized the data collected in an Excel sheet.

I use insights from Habitat Design, Systems Functional Relations, and Operations to establish Safety Lessons, and Design Requirements on Autonomy for Future Martian Habitats:

Safety Lessons:

1. Generate in-situ resources: With limited availability of resources available within the Habitat on Mars, we will need to generate in-situ resources. This includes water, oxygen, and fuel reserves. While Crew 305, did not conduct any experiment on in-situ resources: this should be a requirement for future crews as all long-duration mission to Mars will require the crew to become self

sustainable.

2. Make the most of available sources: Mars receives less than half the solar irradiance (590 W/m2) we receive on Earth, therefore every W of power generated here on Earth will have to be adjusted to what will be generated on Mars. It will be important to make the most of the resources available. For solar power, one can add solar concentrators and a controller that rotates the solar panels with solar position, like what happens at ISS.

3. Have a reliable source of reading for the sensors and water tank level: Our crew had two sources of water readings: one from the sensors at Hab, and the other that we got from our calculations. For the six sols I accounted for, the numbers differed anywhere 3.22 gallons – 37.855 gallons. We went with the more conservative estimate to estimate the remaining amount of water available to us. Given the scarcity of resources however, it is advisable to know exactly the amount of resource you have, and a margin of safety to it, than either under-estimate or overestimate.

4. Take an active effort at bringing the systems back to nominal operating conditions as soon as possible. Crew 305 Valles entered the Sim with no solar panel batteries non-functional (the Battery Charge Discharge Unit was broken, as a result of which, the batteries could not store power). This resulted in the crew using solar power in the day as the main source of energy during the day and the backup generator as the main source of energy during the night. In case one or the other failed, the crew would be left without power, which is essential to keep all critical systems running on Martian habitats.

5. Have magnetic self-aligned helmets on EVA suits. While we were a crew of six, with three people going on EVA and three people staying back to help with EVA operations, initial missions on Mars can have a lot of unexpected situations. For e.g. need for a rescue mission, only one person in the EVA/airlock module. It is important that while each crew member has help, they are also independent and able to wear their own space suit with minimal help from the others. One big problem with the two piece suits is the alignment of the helmet

6. Have multiple ports of exit: Cabin depressurization is a big cause of concern on extra-terrestrial habitats, both on Mars and especially on the Moon. In case of cabin depressurization, sections of the Hab will be isolated using airlocks. When this happens it is still imperative that people in other sections of the Habitat are able to safely exit the Hab. While it is not possible to have all EVA equipment in all Hab modules, it is important to limit the number of people in domes at one time and have the adequate number of EVA equipment and an exit airlock in each module.

7. Check for consistency in equipment performance: For the first six EVAs, I calculated the drop in percentage per mile travelled by the rovers (see Table 1). We see that the rovers perform better at preserving battery for longer distances than they do for shorter EVAs.

Table 2: Drop in Percentage per Mile of Rovers for the First Six EVAs.

Drop in percentage per mile travelled.

Miles

Curiosity

Perseverance

Opportunity

Spirit

EVA 1

0.55

20

10.90909091

EVA 2

0.55

10.90909091

9.09090909

EVA 3

3

8

3.33333333

EVA 4

7.45

4.02684564

4.966442953

EVA 5

5.54

6.137184116

5.77617329

EVA 6

8.22

4.501216545

4.62287105

We can use this information to keep track of rover performance, and confidently estimate how much each individual rover can travel before it runs out of charge. Long term tracking of rover’s performance will also help astronauts determine whether a rover needs earlier maintenance or not.

8. Install methods for investigating software bugs: Crew 305 Valles used Astrolink to track the GPS coordinates of the crew while they are out on EVA. One of the EVAs, the Astrolink software, showed four trackers out instead of three. The Hab comms team communicated with the EVA crew if they had an extra-tracker (Astrolink 10) on them. Upon receiving a negative, the crew with the Mission Support established that Astrolink 10 was a digital artifact. Situations like these, however, are getting increasingly confusing with a larger / independent crew. It is important to have methods for investigating software bugs (evaluating what the root cause is) like these and addressing them.

9. Practice concise comms: Currently, aviation pilots use very precise language to communicate with other pilots and the Air Traffic Controller. It is important to establish similar rules for communication

over comms such that everyone is heard clearly without any misinterpretation. Crew 305 progressively improved in their communication while in the Sim.

10. Understand your systems well: It took a while for Crew 305 to realize that the rovers read the total number of hours they have been operational rather than remaining range on the full charge. While the crew was able to accurately figure out in time what the rover reading said (and fortunately it did not lead to any accidents), it is important for the crew to understand the systems they are working with well – to avoid any mis-interpretations that could lead to mishandling data or equipment.

Design Requirements on Autonomy for future Martian Habitats:

1. Add following monitoring systems and add remote access to them in each Hab area. a. Battery charges

b. Power Generated by Solar Panels

c. Temperature Sensors for Generators and Fuel Cells

d. Voltmeters for Sequential Shunt Units

Our functionality models for the power systems revealed that it is important to have the following sensors to track performance of the power systems at any given time. The readings can be output to the Main Dome Computer Unit that tracks all other systems. This is important for both equipment performance tracking and smooth autonomous system integration.

2. Have a running inventory of the Hab and the different resources available.

3. Automate system transitions: 1) and 2) will allow smooth automated system transitions. While the MDRS has very active Mission Support to facilitate these transitions, Mars is not going to have Mission Support. Or the Mission Support will be 20 – 40 minute lag, and won’t be able to provide on-site services.

4. Have functional backup devices that are structurally non-redundant: During the power outage, the Main Dome in Crew 305 relied on an igniter heater that did not rely on the electricity, but instead on propane. This kept the crew warm, even when the electric heating system didn’t work. This highlights that it is important to have back up devices that are functionally redundant, but not structurally redundant.

5. Organize resources and tools for ease of use: Figure 12 shows some of the cabinet space organization in the Science Dome that house different equipment.

AD_4nXfod5Od-HWnKGYduDRDqmj7dIblrl6IGcBFKCcSVbzDtz8tHz9kJTt2A0vo1t8Dy8_gtlfGKIAHogJchfqIq4snxyFyxJTHyAtnVFVlrgShOpR_AESZRjFA31frF36kL-AEdqx6nw?key=UDBElswbanx1w2tkCIONab5XAD_4nXcCjm_bWvVuNKE3ohqHkJd9MM02TL9ZnlODSdX3n0jwV4QYrGv1pizrtgYBTICiDXxHKjFhxpESKKPWkjniwZyQpjNB4bxR0jpB_dAX74tSA6HMArKfLIwuINEdqDHxnWbEcV9Lwg?key=UDBElswbanx1w2tkCIONab5XAD_4nXe07c-CtAqMa4ZX5NY1ZWNJRk8KAwJ3LMaRVO8n3yHmAuzqrhH9gn5Z318W0AKj2G9rSmInbS1mgrl8MginXofU5X6KSqX_EQC92va9cHWvdrysWcZcpCD-9TZyK84bs7mAxYyy?key=UDBElswbanx1w2tkCIONab5X

Figure 12: Cabinet Organization in Science Dome

While this setup is good for a human to work with. They will look around and find out what they need, it is too cumbersome for an autonomous system and will confuse them. Autonomous systems will need a cleaner organization to work efficiently. The best way to currently do this is to use a 3D printer, where you can create custom shelves and cabinets that autonomous systems can easily work around with.

Future work on this will include compiling a list of functionality models for all systems and components I documented at MDRS. These component functionality models will be used to create a digital extraterrestrial habitat model on the Control-Oriented Dynamic Computational Modeling Platform, where we can simulate different disruptions that will be present on Mars that cannot be simulated at MDRS either due to their absence (such as radiation) or for safety reasons.

7.

Title: Wearable-Based Autonomic Activity Profiles for Real-Time Cognitive Performance Monitoring in Spaceflight

Author(s): Peter Zoss

Description, activities, and results: This study will longitudinally quantify individual changes in autonomic nervous system (ANS) status via a wearable sensor in MDRS crew members to understand how our autonomic activity is associated with sequential measures of cognitive performance for predictive model development. Baseline data from the wearable devices will also be used to look at changes while living in analog isolation. The activities planned to be completed at MDRS included cognitive performance testing. This testing was scheduled to take place every other day starting from Sol 1 for a total of 6 testing sessions for each of the crew members.

This human factor project was able to get through all of its data collection period at MDRS. Cognitive performance testing has been completed for all crew members for the planned 6 tests at the MDRS. These tests occurred on Sols 1, 3, 5, 7, 9 and 11. The tests on Sol 3 had to end early due to power failure, resulting in an incomplete test for one crew member and a missed test for another. The cognitive performance test used is called the Cognition Test Battery, and it was administered to the crew via an iPad. The results from this research will be looked at further back in West Lafayette where analysis can be completed.

Crew 305 Mission Summary_final.docx

Mission Summary- December 20th

Mars Desert Research Station

Mission Summary

Crew 305 – Valles

Dec 8th, 2024 – Dec 21st, 2024

Crew Members:

Commander and GreenHab Officer: Hunter Vannier

Executive Officer and Crew Geologist: Ian Pamerleau

Crew Engineer: Spruha Vashi

Crew Scientist: Monish Lokhande

Health and Safety Officer: Peter Zoss

Crew Journalist: Rashi Jain

AD_4nXfHxOpgYmoEUfJwZhkYarSPIAiot7Y4j0S78PNzNPrvof_37AdngoxlY_hYkZaiycWqP-jeGNO5ObM_CY2sPKsm3aedgG3XQIbW2PxV64njaWSd-kMbYIlSM10pXnTNadcUNuJT?key=UDBElswbanx1w2tkCIONab5X

Acknowledgements:

The MDRS 305 crew would like to express their gratitude to the many people who made this mission possible: our deepest thanks to Dr. Robert Zubrin, President of the Mars Society; Sergii Iakymov, MDRS Director, who assisted us with planning and answered many questions in the months prior to the mission, along with support at the end of our mission; Ben Stanley (and Jules), MDRS Analog Research Program Director and David Steinhour, MDRS Site Manager for being invaluable as Mission Support during the mission and addressing both large and small problems during our stay; Mike Stolz for patience and consistent communication regarding media relations; Russ Nelson for preparing us for emergencies; Scott Davis for EVA suit support; James Burk, Executive Director; Peter Detterline, Director of Observatories; Bernard Dubb, MDRS IT coordinator; Dr. Kshitij Mall and the Purdue Mission Support staff; the Purdue faculty who greatly helped us in the selection process of Crews 305 and 306 (Valles and Montes); all the departments and people at Purdue University who supported this mission; and all the unnamed people who work behind the scene

to make this effort possible, and who gave us a chance to be an active part of the effort towards human exploration of Mars.

Mission description and outcome:

MDRS 305 “Valles”, twin of mission 306 “Montes”, is the eighth all-Purdue crew at MDRS. The mission was characterized by excellent research quality that was diverse yet compatible with one another. We had a high level of performance from a professional and a personal perspective. The diverse crew included two women and four men, and represented three countries (United States, India, Canada) as well as various departments at Purdue. Crew 305 is an all-student crew (undergraduate student, PhD students and candidates), showcasing the strength of Purdue student-lead research in the field of space exploration.

Crew 305 performed a wide range of research tasks with a strong geological and human-machine compatibility focus that regularly led to collaborative research efforts, a primary Crew 305 theme. EVAs led crew members to areas of MDRS that yielded numerous high-quality geologic samples and scientific data collection. Crew members were able to observe EVA activities and leave with a better understanding of how machines can be effectively used to help astronauts on Mars. Engineering, health tracking, and botany experiments concerned with Mars exploration were also successfully conducted, including how MDRS operations affected the health and well-being of the crew during versus prior to the mission. The privilege of sending two Purdue crews back-to-back is not lost on us, as multiple experiments will live on during the Crew 306 “Montes” mission to follow.

MDRS’s unique analogue environment and robust campus was both impactful and relevant for Crew 305, as almost every building was in use during the mission. Much of the research conducted here would not have been possible in typical terrestrial environments or in college facilities. This work will directly contribute to PhD dissertations and future conference presentations that, in turn, will no doubt spread awareness about MDRS missions and foster awareness and passion for space exploration.

Mission description and outcome:

MDRS 305 “Valles”, twin of mission 306 “Montes”, is the eighth all-Purdue crew at MDRS. The mission was characterized by excellent research quality that was diverse yet compatible with one another. We had a high level of performance from a professional and a personal perspective. The diverse crew included two women and four men, and represented three countries (United States, India, Canada) as well as various departments at Purdue. Crew 305 is an all-student crew (undergraduate student, PhD students and candidates), showcasing the strength of Purdue student-lead research in the field of space exploration.

Crew 305 performed a wide range of research tasks with a strong geological and human-machine compatibility focus that regularly led to collaborative research efforts, a primary Crew 305 theme. EVAs led crew members to areas of MDRS that yielded numerous high-quality geologic samples and scientific data collection. Crew members were able to observe EVA activities and leave with a better understanding of how machines can be effectively used to help astronauts on Mars. Engineering, health tracking, and botany experiments concerned with Mars exploration were also successfully conducted, including how MDRS operations affected the health and well-being of the crew during versus prior to the mission. The privilege of sending two Purdue crews back-to-back is not lost on us, as multiple experiments will live on during the Crew 306 “Montes” mission to follow.

MDRS’s unique analogue environment and robust campus was both impactful and relevant for Crew 305, as almost every building was in use during the mission. Much of the research conducted here would not have been possible in typical terrestrial environments or in college facilities. This work will directly contribute to PhD dissertations and future conference presentations that, in turn, will no doubt spread awareness about MDRS missions and foster awareness and passion for space exploration. Figure 1. MDRS 305 Crew posing in front of the habitat. Left to right: Executive Office and Crew Geologist Ian Pamerleau, Health and Safety Office Peter Zoss, Commander and GreenHab Officer Hunter Vannier, Crew Journalist Rashi Jain, Crew Engineer Spruha Vashi, and Crew Scientist Monish Lokhande.

It has been a pleasure to be commander of this crew, which successfully completed a wide variety of high level research while sharing many laughs along the way. I was particularly impressed by the empathy and major effort crew members committed to help fellow crewmates be as successful as possible with research,

which included a 4-day soldering, wiring, and coding saga. We experienced significant technical challenges, but everyone took immediate action and worked the problems together. At MDRS, the crew properly followed safety and research protocols, performed as a tight group, and used their time productively. Crew 305 expressed genuine interest in learning about the diverse backgrounds and research interests represented by the group, which made for a more meaningful and fulfilling experience.

Figure 1. MDRS 305 Crew posing in front of the habitat. Lef to right: Executive Office and Crew Geologist Ian Pamerleau, Health and Safety Office Peter Zoss, Commander and GreenHab Officer Hunter Vannier, Crew Journalist Rashi Jain, Crew Engineer Spruha Vashi, and Crew Scientist Monish Lokhande.

It has been a pleasure to be commander of this crew, which successfully completed a wide variety of high level research while sharing many laughs along the way. I was particularly impressed by the empathy and major effort crew members committed to help fellow crewmates be as successful as possible with research,

which included a 4-day soldering, wiring, and coding saga. We experienced significant technical challenges, but everyone took immediate action and worked the problems together. At MDRS, the crew properly followed safety and research protocols, performed as a tight group, and used their time productively. Crew 305 expressed genuine interest in learning about the diverse backgrounds and research interests represented by the group, which made for a more meaningful and fulfilling experience.

Summary of ExtraVehicular Activities (EVA)

After being trained in the use of rovers and in the safety protocols for EVAs, the crew had twelve excursions during rotation 305. Two of which were the traditional short EVAs to Marble Ritual, and the remaining EVAs were aimed at gathering data, samples, or observations for one or more crew members’ research. The EVAs reached locations that featured ephemeral streams for measuring and/or paleosol for sampling. Observations were also taken on how machines could aid astronauts taking data in the field. EVA teams thoroughly explored the regions in Candor Chasma, Eos Chasma, southeast of Kissing Camel Ridge (KCR), and east of Hab Ridge (Fig. 2).

While the EVA team was in the field taking data, the rest of 305 were still involved in the EVA. Every Crew 305 member would meet in the lower Hab about 30 minutes before the EVA began to help those gearing up get ready and enter the airlock (and always took airlock photos). During the EVA, in addition to 45-minute check-ins, the comms team back at the Hab would take notes on the EVA team’s movements including time they parked the rovers, time they began the return trip to the Hab, and any additional information. This information was logged in an EVA spreadsheet that we are leaving as a template for future crews to use. The comms team also was able to use the GPS trackers on the EVA team to help them find their desired location in real time. The comms team was able to advise the EVA team on an accessible route into Eos Chasma during EVA 05. Overall, Crew 305 had a very safe and successful time in the field for multiple crew members’ research projects.

Table 1. Summary of EVAs, indicating Sol of execution, the destination of each EVA, time spent walking and taking measurements/ samples/observations, total time, walking distance, and total distance.

EVA

Sol

Destinations

Walking & Activity Time (h:mm)

Total Time (h:mm)

Walking Distance (km [miles])

Total Distance (km [miles])

1

1

Marble Ritual

0:45

1:00

1.32 [0.82]

1.87 [1.16]

2

1

Marble Ritual

1:00

1:15

1.48 [0.92]

2.03 [1.26]

3

2

Candor Chasma

2:45

3:05

3.25 [2.02]

6.25 [3.88]

4

3

Compass Rock/ Candor Chasma

3:10

3:45

4.63 [2.88]

12.08 [7.50]

5

5

Eos Chasma

3:10

3:30

5.41 [3.36]

10.95 [6.80]

6

6

Eos Chasma

2:15

2:45

2.93 [1.82]

11.15 [6.93]

7

7

Zubrin’s Head/ White Rock

Canyon

2:15

2:55

4.46 [2.77]

11.58 [7.20]

8

8

Hab Ridge/

Zubrin’s Head

2:55

3:25

4.42 [2.74]

11.54 [7.17]

9

9

North of Hab

1:25

1:25

2.22 [1.38]

2.22 [1.38]

10

10

South KCR

1:45

2:15

2.40 [1.49]

6.72 [4.18]

11

11

East Zubrin’s

Head/White Rock Canyon

3:25

2:55

3.42 [2.13]

12.92 [8.03]

12

Total

12

Compass Rock

1:15

26:05

1:40

29:55

1.24 [0.77]

37.18 [23.10]

7.96 [4.95]

97.27 [60.44]

AD_4nXdH0BZ174DcQvdKGTqUWEDzCnyf9aZPVdBoApbgwwH7yzjF5ZdZUXdy75MQcW-OLyW1LpAe00zjvVsDu5pIGnLHI_WUd4AEHn_gTQYvIIZx4W5jbWG00XOWTsd-K9G45gvYc8LF?key=UDBElswbanx1w2tkCIONab5XFigure 2. Satellite map of the three regions explored by Crew 305 – Valles. There were 3 EVAs spent in the drainage basin of Candor Chasma (purple pins), 2 in the drainage basin of Eos Chasma (blue pins), and 4 in the drainage basin Southeast of Kissing Camel Ridge (green pins).

Summary of GreenHab Activities

Crew GreenHab Officer: Hunter Vannier

It was truly a pleasure working in the GreenHab and learning how to most efficiently care for its residents, which are all happy and healthy. During the mission, the cucumbers were the most dramatic and required twice-daily watering to prevent wilting. Many cucumbers have appeared over the past two weeks, though they are not mature enough to indulge in before our departure, and cherry tomatoes appeared on our last afternoon. The greatest change to the GreenHab was the transplanting and thinning of tomatoes. Now each pot only has one tomato to ensure healthy growth, proper fruiting, and to improve current and future water efficiency. Two raised beds were refreshed with new soil and planted with six different types of microgreens. These will also have to be enjoyed by future crews. The crew was able to enjoy almost daily use of crops in meals, including sauteed arugula, carrot green salad, regular use of cilantro in a variety of meals, and basil, thyme, and parsley in spaghetti sauce. On our final day, we even got to harvest a cucumber. Aside from the general care of the GreenHab, I was able to successfully carry out a soil moisture monitoring experiment to improve water efficiency for the growth of microgreens (see below in Science Summary section). Below I will share a watering schedule for the current set of crops.

Recommended watering schedule: tomatoes, distribute 2-3 gallons among tomatoes every 2 days; cucumbers, 1 gallon in the morning and 1 gallon in evening; raised microgreen beds, 50 oz per morning; radish and carrot bin, ½ gallon every 3 days; herb raised bed, 1.5 gallons every 5 days.

Science Summary

We had 7 separate projects that covered a range of topics. Some of them were EVA-related, while others were conducted at MDRS campus. Overall, each project uniquely highlighted each crewmember’s strength and expertise, and expanded scientific, engineering, and human factor knowledge to support crewed exploration of Mars.

Research Projects:

1.

Title: Hydraulic Geometry of Ephemeral Streams to Potentially Elucidate Paleoclimate Author: Ian Pamerleau

Description, activities, and results: Ephemeral streams are present around the MDRS campus and carve out the landscape after heavy rain. The hydraulic geometry of these streams mathematically describes how the width and drainage area change as the flow moves up- to downstream. There is a range of values that the hydraulic geometry of rivers tends to fall within, which tells us more about climate, lithology, and sediment load. These values have been established for the more “mature” rivers with constantly flowing water. However, the ephemeral streams at MDRS may not have achieved the values present in the literature. I will test if the ephemeral streams of MDRS hold the same hydraulic geometry in the literature, and if it is able to tell us anything about the climate.

We were able to thoroughly explore the three major areas where I wanted to take stream width measurements: Candor Chasma, Eos Chasma, and the region southeast of Kissing Camel Ridge (KCR) (Fig. 2). My objective was to take measurements of branching tributaries and between said tributaries along a main channel because the drainage area of a channel will substantially increase when the area of another stream is added. We also took three measurements of the stream width at each location a meter or so apart from one another to get an average width of the location.

I have not been able to create a plot of my data yet and am still in the processing stage. The trend I expect to see (i.e., smaller drainage area locations yield smaller stream widths and larger drainage area locations yield larger stream widths) will likely hold based on my observations and preliminary processing. The data may become a bit more complicated when comparing two sections of high drainage area, however, as there seemed to have been some variability in different factors such as lithology, slope, vegetation, etc.. I tried to limit these factors based on the location I chose but it is impossible to fully eliminate them, but I have taken photos of each location we took measurements of to better analyze any anomalies. I will hopefully be able to discuss these results with my undergraduate research advisor (whom I have worked on a geomorphology project with) or a geomorphologist/hydrologist at Purdue and share my findings at a conference once the analysis has been completed.

2.

Title: Effect of Variable Soil Moisture on Microgreen Growth

Author(s): Hunter Vannier

Description, activities, and results: Efficient plant growth is an important element of life at MDRS and will be critical for sustainability if we want to create a self-sustaining presence on other planetary bodies. For this project, I aimed to conduct an experiment that investigated how soil moisture content affects microgreen growth to find efficient watering practices. The established GreenHab infrastructure at the Mars Desert Research Station is an ideal place to conduct this experiment.

Experimental setup: I filled four 3” x 3” potting containers with Miracle Grow potting soil available in the GreenHab. The soil required priming and mixing with water, so the pots started out with some moisture level. In each of the pots, I added 1 g of broccoli microgreen seeds, then covered with a thin layer of soil. Each morning, I would water each pot with a specific quantity of water. Pot 1 received 2 oz water, Pot 2 received 1.5 oz water, Pot 3 received 1 oz water, and Pot 4 received 0.5 oz water. Pot 5 was a control pot and received no water over the duration of the experiment to determine if the ambient moisture conditions in the GreenHab were sufficient to stimulate growth without watering. The soil moisture monitoring system consisted of four capacitive soil moisture sensors (one for each pot) attached to an Arduino Uno R3 microcomputer (Fig. 3). Two measurements were taken in the morning, one prior to watering and one after, and one measurement was taken in the evening via direct connection to a personal laptop while running an Arduino serial monitor code. An initial baseline reading for each was obtained a day after the soil was primed

(prior to seeding). I waited a day after priming to equilibrate the moisture content for each pot. Subsequent measurements were subtracted from these base values for the respective pots.

AD_4nXf1Ke4qlYlkSJfFNiIFrFjE0fxf_yfumwJKdFpZT6a3vDotUh97jPW6aeoSPI6XKvALSQj5YHTK2iDAscHRrHNrlluFHQkyy7JKX_ZqKrRCB4toHFKy0pihkwNm4zmofmlngJRNNA?key=UDBElswbanx1w2tkCIONab5X

Figure 3: The soil moisture monitoring setup. The Arduino Uno is shown in the bottom left of the image, and soil moisture sensors are shown in each pot, labelled 1-4. The image is from the final afternoon of the experiment, December 20. One can see how similar the microgreen growth is in Pots 1-3 despite receiving significantly different water quantities. .

Results from the experiment are shown in Fig. 4. The first day of watering occurred on December 16. Initially, each pot was near the baseline value after the first watering except Pot 1 (2 oz). The 2 oz of water may have been sufficient to saturate more of the soil compared to the other pots. However, by the evening the pots had once again equilibrated. On the morning of Day 2, a sinusoidal pattern developed that persisted for the duration of the experiment, but the moisture of each pot seemed to reach a stable pattern on Day 3 (December 18). Pot 1 (2 oz) displayed the most significant change in soil moisture between morning watering and evening, and it maintained consistently higher soil moisture content than Pots 2-4. Interestingly, the pots ranging from 0.5 to 1.5 oz tend to have somewhat similar soil moisture content, each significantly lower than Pot 1 (2 oz). Pot 4 (0.5 oz) often has a higher soil moisture content than Pots 2 and 3, which is unexpected and may be due to a higher concentration of water being deposited near the sensor when watering, or a slightly different sensor depth. In general, the pots lose moisture at a relatively constant rate during the day and evening. Based on the sensor data alone, it seems that 0.5-1.5 oz of water could achieve similar soil moisture. However, most of the moisture could have remained in the top few cm of soil for Pots 2-4. This is in contrast with Pot 1 (2 oz) where water seemed to consistently saturate more of the soil and to a higher degree. This is an important result because microgreens have shallow roots and can be sustained by soil

moisture content at the surface rather than at depth. Therefore, I conclude that 2 oz of watering for these pots is more than needed to grow the microgreens.

AD_4nXcwJIjvV4RgC7RSGhoRgJ7L8tDUeWW1w6dB6p9bsps4onYNl-nm11nbDAdlUcvugV-WAG24YIb-2ch510wDhyAAB2s8rwfKxDyfPZDOZq2oXLNb9Xg_89BkYMEqXZNN_nKi72h1NA?key=UDBElswbanx1w2tkCIONab5X

Figure 4: Sensor data from the soil moisture monitoring station. The y-axis shows soil moisture values, and the x-axis shows the time of day when measurements were taken. Each colored line represents one of the pots: blue is Pot 1 (2 oz), Pot 2 is green (1.5 oz), grey is Pot 3 (1 oz), and Pot 4 (0.5 oz) is orange. There is a gap because data was not obtained for the Dec. 18 post water measurement.

This assertion is supported by observational evidence of microgreen growth (Fig. 3). The microgreens were first observed to sprout on the evening of December 19. Pot 1 (2 oz) clearly had 4 to 5 times the growth observed in Pot 2 (1.5 oz) and Pot 3 (1 oz). By the morning of December 20, Pots 1-3 clearly had microgreens occupying most of the pot; Pots 2 and 3 had similar amounts of microgreens, and about ¾ that of Pot 1. Pot 4 showed signs of soil disturbance caused by sprouting but the microgreens had not penetrated the surface of the soil. Based on the observed growth rates and soil moisture content, I conclude that 1 oz of water per pot is the most efficient watering practice for the broccoli microgreens. Pot 3 (1 oz) achieved a similar growth rate as Pot 2 (1.5 oz), and though it did not sprout as quickly as Pot 1 (2 oz), a similar level of growth was achieved by the end of the experiment with half the amount of water. A future experiment could be to first saturate each pot with variable amounts of water, then add a similar amount of water to each to see if a larger initial watering could stimulate growth and enable less subsequent watering.

To translate these results to the GreenHab, we can compare the pots to the raised beds that can be used for microgreen growth. The beds are 33.5”x 13” for a total surface area of 435.5 in2 and the pots are 3”x 3” for a surface area of 9 in2. Assuming the same depth, this means ~50 pots would fit in the raised bed, and that to efficiently water the bed it would take 50 oz per day. Throughout my time at MDRS, I have been using at least ~64 oz of water per day for one of these beds and sometimes an additional 30 oz. At minimum, my experiment supports that I could improve efficiency in raised bed watering by ~22%, a significant improvement. I would recommend 50 oz per day for future crews growing microgreens in raised beds. There may be changes in evaporative rates between the beds and pots which should either be calculated or tested.

3.

Title: Sampling Paleosol Sequences for Mars Comparison

Author(s): Hunter Vannier

Description, activities, and results: The goal of this project was to collect samples from at least one exposed paleosol sequence with the intention of bringing it back to Purdue University for spectral and microscopic analyses. Paleosols have been proposed to have been observed on Mars via rover data, and little work has been done to understand their role in sedimentary recycling and retention of past water on the Mars surface. Three paleosol sequences were collected (15 total samples) that represent tens of millions of years of history in the MDRS region. The first two sets were collected on Sol 3 in the interior and just outside Candor Chasma (Fig. 5). The third was collected near Zubrin’s head. Complimentary to the Crew Geologist’s work, river channel sediments were also collected at different locations across MDRS (7 total) with the aim of understanding how paleosols are recycled in the fluvial systems at MDRS, and how composition changes spatially across the field areas.

AD_4nXeAeUquebG3dEygFsGhkd0tICd051yM2BV447GqQU7mPbEm-ZNp_mKJxuV1E9uKXS1i_AGtev3z4RAjqg_Hjt27VRnlbct2ws4yF_zLJaoBEl9lIcvzNclBcooVkdUXEDfCZLaQpQ?key=UDBElswbanx1w2tkCIONab5XFigure 5: Example paleosol exposures observed during EVA 03 in Candor Chasma. Numbers indicate sampling locations within the paleosol sequence. (a) Paleosol sequence ~300 m after the entrance to Candor Chasma. Darker-toned layers indicate higher concentrations of organic material and are consistent with changing water environment. Capping rock is a

conglomerate and sandstone of the Morrison Formation (b) Paleosol sequence just exterior to the Candor Chasma entrance. Note the significant amount of red color compared to (a), indicating a much higher concentration of iron oxides. Cap rock is a fine-grained sandstone that is commonly exposed at ground level through the Compass Rock area.

The samples collected at MDRS will be analyzed in the pursuit of improving our understanding of paleosols on Mars and their relationship to variable climates on Mars. Visible to near infrared spectra, X-Ray fluorescence, and X-Ray diffraction data will be collected to form a preliminary data set to improve context for Mars observations. This data will likely be published at a conference in the next year. This data will also be the basis for a future NASA Solar Systems Working proposal to investigate the MDRS paleosols and river systems in greater detail.

BONUS: we came across sedimentary concretions that are documented in the MDRS Geology Unofficial Handbook. These are very similar to outcrops recently observed in Jezero Crater by the Mars 2020 Rover. See Figure 6 for a comparison.

a

c

AD_4nXdp1e1R7jM9_b6Q1HrLJNAJTC2XYWe5CLhhOHeaaQ48N-EFtjkyGt8TBwKEtNLzr10TvZa0DLqGbLV0wSBdiTxyZxNxSpylb0BWq0qU09FzSFAQwfM3UjB19s5bjUQoZt1nTH81?key=UDBElswbanx1w2tkCIONab5Xb d

Figure 6: Comparison between concretions at MDRS and on Mars. (a,b) Sandstone concretions in the fluvial channel near Zubrin’s Head. (b,c) Concretions observed by the Mars 2020 Perseverance Rover in Jezero Crater near the Bright Angel formation around Sol 1022 (Courtesy Adrian Broz; publicly available images from Mastcam-Z).

4.

Title: Investigating Rover Applications in a Mars Analog Environment

Author(s): Spruha Vashi

Description, activities, and results: The objective of this work was to build a modular rover that can traverse the analog Mars terrain along with crew members on EVA. Testing at MDRS was set to include mobility testing over different sections of terrain, confirming communications and operability, and exploring human-machine teaming capabilities. However, after multiple long days of group efforts at assembly and troubleshooting, the rover, named Hermes, was unfortunately unable to start and be ready for data collection, but is pictured in Figure 7. While this outcome was unfortunate and meant that Hermes could not be tested outside on EVAs, it provided a good insight into major improvements in assembly that can be applied for future testing. Understanding the complex system and its weakest points of failure was not lost, and this information now allows us to ensure a smoother assembly process in future usage.

AD_4nXfZUg-Wh08ej3o2GNaNJaESKQwg7K1XHwmaJ3a_9z2ZN1Sm5hRAPZc3ebpzT6UXGcx0fMb1spMdl3bnvxPlw65K6VnZUrsGkitSJfkinYds35SMiVcugpCXqE5aadoyzYH7NhU_uQ?key=UDBElswbanx1w2tkCIONab5X

Figure 7: Hermes the rover, with electronics and wiring included. Expected weight is 25 pounds, and expected maximum speed is 1.6 meters per second.

Although Hermes was not utilized on EVA, data and observations were still collected to help understand applications of rovers in the analog environment, especially in scenarios where the rover would act as a member of the EVA team. Some main points of investigation were mobility, functionality, communications, teaming strategies, and future design. For mobility, a single tire was taken out on EVA and tested on multiple different terrain types to understand its ability to travel across different terrain. Since the Crew Geologist’s research was primarily working with stream beds, most terrain testing was conducted on or near stream beds to understand the scenario in which the rover would be travelling along with the team while collecting stream bed data. The testing was done by rolling the single tire across 10ft strips of terrain multiple times, with the same downward pressure applied while rolling to simulate the actual rover’s 25lb weight, as seen in Figure 8. The results showed no more than 5 mm of tread depth in the softest terrain tested, compared to 200 mm footprints. In stream beds, the tires showed a clear tread but when hitting denser patches required more effort to get past. On dry and rocky lands, the tires showed no tread but rolled smoothly over different sizes of small rocks. It is still uncertain and unlikely that the rover would be able to traverse across very rocky, winding paths.

AD_4nXdiqt8N82wkuiZlumOLqViU2UjtUz3ZA8C2OQnPYiLNsfeK8ZPa8gq5wexFqS5HEgsy3ac2-5wnp8n-u68u6ewcL17Tt5IJ9Auuejtvk-NYgu7QbW8BvW5i1M3IW_3GWuiSjr2Ehg?key=UDBElswbanx1w2tkCIONab5X

Fig. 8: Image of terrain testing in a stream bed. Three strips of 10ft were identified and marked with flags and the tire was rolled along all three. Tire tracks are seen at each line, note that the found was denser in the center line and thus there are gaps of tracking since the tire slipped at those points.

To understand the functionality and teaming strategies that the rover could possibly adopt once it is functional, qualitative observations were made on certain aspects of data collection that delay operations and could be eliminated with the presence of a rover. For example, it was observed during the Crew Geologist’s stream bed measurements that the travel bag of materials is a hindrance to carry. It was noticed that writing down geological information, data points, and GPS information all takes time, and some of these items can be noted down by an autonomous system that is present, in this case, a rover. On EVA 11, the Crew Geologist was timed while he was taking measurements to understand his efficiency and points of improvement. On average, there was a reduction of about 1 minute of time from the Crew Geologist taking the measurement entirely by himself vs. having an EVA team member help with the measurement. While this confirms the idea that an EVA team will make data collection more efficient, the important note is that regardless of the number of members involved, data recording took 30-45 seconds for every measurement. Data recording was assumed to include notes on geological information, data points, and GPS information. All these items can be autonomized with a rover on hand that can collect and store the data and simplify the measurement process for the crew members. Another point of investigation was the time it takes for the rover to travel alongside a crew member. The specifications of Hermes indicate that its maximum speed would be about 1.6 meters per second, or approximately 3.5 miles per hour. Although Hermes was not actively tested, a measurement was made of comparing a crew member traveling from one data collection point to another at normal walking speed vs a crew member walking at specifically 3.5 mph (estimated to be 2 strides per second). The delay of a travelling rover was found to be 31 seconds and would also be further delayed in the case that the stream bed is very rocky, meaning it must travel on the outside, flatter areas.

The observations made on EVAs clarify future design upgrades of the rover. For example, communications and data recording capabilities, as well as carrying capacities would be the most ideal additions to Hermes at the time. It is hoped that with future usage of Hermes, more scientific applications can be implemented, and the rover can be well versed to work with many different variations of data collection and support the

crew’s research ambitions. Future observations of Hermes in action working in a team of scientists can further identify failure and improvement points for teaming strategies of autonomous systems and astronauts in analog environments, the Moon, Mars, and beyond.

5.

Title: MDRS Monitoring Overlay Sensors

Author(s): Monish Lokhande

Description, activities, and results:

Description: The project was focused on developing a network of Raspberry Pis To measure data from various locations in the habitat to measure the necessary sensor data (CO2, VOC, Air Quality, Temperature and Humidity). This data would be collected and analysed for any possible sudden changes. The “Sensor Packs” would be made to operate independently on batteries.

Activities: A total of two sensor packs were developed inhouse were placed in GreenHab and Lower Hab to continuously monitor the temperature, humidity and CO2 levels. The sensor packs relay the information in the two different types of feeds: Local and Global. The local feed updates every minute to provide real-time data to the crew members in the habitat and can be used by the local crew members to monitor the health of a certain location in the HAB. On the other hand, global feed is used as a transfer of necessary information to a remote ground station. The feed is designed in such a way that it considers the delays inherent in Mars-to Earth communication. To limit the consumption of bandwidth and latency effects, the global feed by default parses the data and sends only the necessary data at regular intervals when everything seems within acceptable range of values. The continuous relay of data for global feed is done when there is a sensor which is not functioning or has faulty values. The sensor modules have the dual functionality to power using battery packs or by a wall power source. This makes it possible to be located at any location in the habitat.

Limitations: The sensor modules had a limitation on the number of sensors because of limitation of data to be published. The CO2 sensors needed calibration to have a reference for correct value calculation and therefore the values had a higher fluctuation.

Results: The sensor modules developed actively monitor data from the GreenHab and Lower Hab successfully. The local dashboard image is given as a reference, which populates with data every minute. If

any sensor has faulty data, there is a corresponding notification sent to the local and global dashboards. Having local and global dashboards help crew members quickly analyse any faults as well as inform the remote ground station of any anomalies that might have occurred. Future applications will include adding a notification in the form of sound or LEDs, to alert which sensors are not working or giving not acceptable values. Another extension will be to include more sensors. The project is being continued by Crew 306 for their research.

AD_4nXedpaHfPgBDDMJXgP3dinZtQybZiPz7w7Sl2N2Yd1t96ZiuFHGbOU6NlQ7gB3CP4gaoshlHbo-ZztFeZx9vTr11HEo0OOprP-A4pKEaTPj1RGcdkBuJqYUJ6XtX9iBvAiq8-0yQvA?key=UDBElswbanx1w2tkCIONab5X

Figure 9a. Local Data Feeds for individual sensors

AD_4nXf1Tp781UQpRTQI7Oio10Cr_DZHH2X_dqyxwxDIXej4I0vrtxwEgpaxFHOjrbr3PFnAuHIbgxRaFiyGriKuoK0OBb2AGu01X-ccrl8GAjhslush30pk2PjeOQkOcGSQviozAugs3w?key=UDBElswbanx1w2tkCIONab5XFigure 9b. Local Dashboard for sensor information

6.

Title: Safety Lessons and Design Requirements on Autonomy for future Martian Habitats Author(s): Rashi Jain

Description, activities, and results:

Description: Mars will have both periods of dormancy and crewed operations. Therefore, future Martian habitats must integrate autonomous systems and design practices that ensure reliable and safe operations in both operational phases of the Hab. The objective of my study is to understand how the different systems work together in a Habitat, identify weak design points and practices, and recommend safety controls and design requirements for future autonomous systems that can ensure both quick decision-making and resilient and safe habitat operations.

Activity: For this, I am studying MDRS habitat design and operations during the 12 Sols that we have at the Mars Desert Research Station from December 8th, 2024 – December 20th, 2024 to: (i) identify and draw out the functional relations between different systems in the Habitat, (ii) analyze how effective are the Habitat systems at maintaining or providing resilience to the anomalies and faults that we face during the mission.

Results: In this report, I include the results from Sol 1 – Sol 6 operations. I am still working on processing the data from the remaining six sols. For Hab, I include results only from Science Dome and the EVA operations. I am still working on processing observations made in the Main Dome, Green Hab, Repair and Maintenance Module, the Tunnels, and the Airlock.

Habitat Design

I toured each section of the Habitat and documented the different design features and resources available in each of those sections. The purpose for this exercise in each Habitat section is to understand the different resources available in each dome and what they enable us to do. It helps us (i) analyze how can or can the equipment and resources available to us both locally in each dome, and throughout the Habitat help us navigate anomalous situations, and (ii) are the current design and resources adequate to interface with autonomous systems? What, if any, should be the design requirements for future robotics or autonomous systems?

This step led to Habitat Systems Functional Relations

Habitat Systems Functional Relations

Relations between different habitat systems at MDRS. The different systems in the Habitat can be categorized into the following seven: power; interior environment; environmental control, life support system, and extra-vehicular activity, food processing, structure, command, control, and communication; and human, robots/safety controls. Here we show only power, but during the time at MDRS these models have also been sketched out for extra-vehicular activity, interior-environment, and command, control, and communication. I am still working on putting together models for other systems listed.

Power System: Figure 10 shows the power system component architecture and relations at the MDRS facility. There are two main sources of power, the solar panels (primary source) that are supposed to generate power and charge the batteries during daylight, and the backup generator (secondary source) that is to provide electricity in case solar panels malfunction, or the batteries run out of charge. Power generated through solar arrays, or the generator goes through a Sequential Shunt Unit integrated within the system which regulates the voltage of generated power. It then goes through a Direct Current Switching Unit (DCSU) which is the first component in the power distribution system. The DCSU determines power flow: i.e. how the power is distributed based on power generated and the integrated algorithm. DCSU interfaces with the batteries using a Battery Charge Discharge Unit (BCDU), whereas it interacts with the downstream loads using Main Bus Switching Unit (MBSU), DC to DC converter unit, that converts voltage to 120 Vdc, and Remote Power Controller Module (tripper box).

AD_4nXe6NcjbCFh-jQtU5ut1XGli-37DxCd2abUxbv-Kd_pcQI25Nl1sZDFGzlM8bZfSD1KJp9IjrQ1EHe3ih9KQyUwbLzN6iaikXWQozDIkxYaP4IqfQRhs-j758IzxUfnTccyISLG5xw?key=UDBElswbanx1w2tkCIONab5X

Figure 10: Power System Component Architecture and Relations at MDRS

With this power system component architecture and relation diagram at MDRS, we built a functionality diagram for individual components. Functionality diagrams are causal relation diagrams that show what the function of each component in the system is and what are the different factors it’s affected by. Figure 11 shows the functionality diagram of the solar panels. The grey circle represents the component itself (solar panel), the blue circle represents the function (generate power), the black circles represent the other systems in the Habitat system that affect either the component or its function (in this case we see that solar panel functions are affected by heating/cooling systems), the yellow circles represent variables and any other factors that influence the component’s function (in this case the solar irradiance affecting the power generative capacity).

AD_4nXdv7fPYmsMD2dHVxrJmGwYBB1-BcQU5pUGecNyzycSUIory2JpAUqNn8xUIff0Xu7qQ5apxYBd7L5sFex72KVln7gEw1ddfQp_uGb1c23kS2ipL2ubM2FJNfoQjg8FCDzdBw6ux3A?key=UDBElswbanx1w2tkCIONab5X

Figure 11: Functionality diagram for Solar Panels

Using these functionality diagrams, we place “T” variables, also known as test variables. These T variables inform the design of where future monitoring systems should be placed. For instance, in case of a solar power, we recommend placing the

Operations summary: I monitored Hab operations, resources usage, and supplies through the 12 Sols and organized the data collected in an Excel sheet.

I use insights from Habitat Design, Systems Functional Relations, and Operations to establish Safety Lessons, and Design Requirements on Autonomy for Future Martian Habitats:

Safety Lessons:

1. Generate in-situ resources: With limited availability of resources available within the Habitat on Mars, we will need to generate in-situ resources. This includes water, oxygen, and fuel reserves. While Crew 305, did not conduct any experiment on in-situ resources: this should be a requirement for future crews as all long-duration mission to Mars will require the crew to become self

sustainable.

2. Make the most of available sources: Mars receives less than half the solar irradiance (590 W/m2) we receive on Earth, therefore every W of power generated here on Earth will have to be adjusted to what will be generated on Mars. It will be important to make the most of the resources available. For solar power, one can add solar concentrators and a controller that rotates the solar panels with solar position, like what happens at ISS.

3. Have a reliable source of reading for the sensors and water tank level: Our crew had two sources of water readings: one from the sensors at Hab, and the other that we got from our calculations. For the six sols I accounted for, the numbers differed anywhere 3.22 gallons – 37.855 gallons. We went with the more conservative estimate to estimate the remaining amount of water available to us. Given the scarcity of resources however, it is advisable to know exactly the amount of resource you have, and a margin of safety to it, than either under-estimate or overestimate.

4. Take an active effort at bringing the systems back to nominal operating conditions as soon as possible. Crew 305 Valles entered the Sim with no solar panel batteries non-functional (the Battery Charge Discharge Unit was broken, as a result of which, the batteries could not store power). This resulted in the crew using solar power in the day as the main source of energy during the day and the backup generator as the main source of energy during the night. In case one or the other failed, the crew would be left without power, which is essential to keep all critical systems running on Martian habitats.

5. Have magnetic self-aligned helmets on EVA suits. While we were a crew of six, with three people going on EVA and three people staying back to help with EVA operations, initial missions on Mars can have a lot of unexpected situations. For e.g. need for a rescue mission, only one person in the EVA/airlock module. It is important that while each crew member has help, they are also independent and able to wear their own space suit with minimal help from the others. One big problem with the two piece suits is the alignment of the helmet

6. Have multiple ports of exit: Cabin depressurization is a big cause of concern on extra-terrestrial habitats, both on Mars and especially on the Moon. In case of cabin depressurization, sections of the Hab will be isolated using airlocks. When this happens it is still imperative that people in other sections of the Habitat are able to safely exit the Hab. While it is not possible to have all EVA equipment in all Hab modules, it is important to limit the number of people in domes at one time and have the adequate number of EVA equipment and an exit airlock in each module.

7. Check for consistency in equipment performance: For the first six EVAs, I calculated the drop in percentage per mile travelled by the rovers (see Table 1). We see that the rovers perform better at preserving battery for longer distances than they do for shorter EVAs.

Table 2: Drop in Percentage per Mile of Rovers for the First Six EVAs.

Drop in percentage per mile travelled.

Miles

Curiosity

Perseverance

Opportunity

Spirit

EVA 1

0.55

20

10.90909091

EVA 2

0.55

10.90909091

9.09090909

EVA 3

3

8

3.33333333

EVA 4

7.45

4.02684564

4.966442953

EVA 5

5.54

6.137184116

5.77617329

EVA 6

8.22

4.501216545

4.62287105

We can use this information to keep track of rover performance, and confidently estimate how much each individual rover can travel before it runs out of charge. Long term tracking of rover’s performance will also help astronauts determine whether a rover needs earlier maintenance or not.

8. Install methods for investigating software bugs: Crew 305 Valles used Astrolink to track the GPS coordinates of the crew while they are out on EVA. One of the EVAs, the Astrolink software, showed four trackers out instead of three. The Hab comms team communicated with the EVA crew if they had an extra-tracker (Astrolink 10) on them. Upon receiving a negative, the crew with the Mission Support established that Astrolink 10 was a digital artifact. Situations like these, however, are getting increasingly confusing with a larger / independent crew. It is important to have methods for investigating software bugs (evaluating what the root cause is) like these and addressing them.

9. Practice concise comms: Currently, aviation pilots use very precise language to communicate with other pilots and the Air Traffic Controller. It is important to establish similar rules for communication

over comms such that everyone is heard clearly without any misinterpretation. Crew 305 progressively improved in their communication while in the Sim.

10. Understand your systems well: It took a while for Crew 305 to realize that the rovers read the total number of hours they have been operational rather than remaining range on the full charge. While the crew was able to accurately figure out in time what the rover reading said (and fortunately it did not lead to any accidents), it is important for the crew to understand the systems they are working with well – to avoid any mis-interpretations that could lead to mishandling data or equipment.

Design Requirements on Autonomy for future Martian Habitats:

1. Add following monitoring systems and add remote access to them in each Hab area. a. Battery charges

b. Power Generated by Solar Panels

c. Temperature Sensors for Generators and Fuel Cells

d. Voltmeters for Sequential Shunt Units

Our functionality models for the power systems revealed that it is important to have the following sensors to track performance of the power systems at any given time. The readings can be output to the Main Dome Computer Unit that tracks all other systems. This is important for both equipment performance tracking and smooth autonomous system integration.

2. Have a running inventory of the Hab and the different resources available.

3. Automate system transitions: 1) and 2) will allow smooth automated system transitions. While the MDRS has very active Mission Support to facilitate these transitions, Mars is not going to have Mission Support. Or the Mission Support will be 20 – 40 minute lag, and won’t be able to provide on-site services.

4. Have functional backup devices that are structurally non-redundant: During the power outage, the Main Dome in Crew 305 relied on an igniter heater that did not rely on the electricity, but instead on propane. This kept the crew warm, even when the electric heating system didn’t work. This highlights that it is important to have back up devices that are functionally redundant, but not structurally redundant.

5. Organize resources and tools for ease of use: Figure 12 shows some of the cabinet space organization in the Science Dome that house different equipment.

AD_4nXfod5Od-HWnKGYduDRDqmj7dIblrl6IGcBFKCcSVbzDtz8tHz9kJTt2A0vo1t8Dy8_gtlfGKIAHogJchfqIq4snxyFyxJTHyAtnVFVlrgShOpR_AESZRjFA31frF36kL-AEdqx6nw?key=UDBElswbanx1w2tkCIONab5XAD_4nXcCjm_bWvVuNKE3ohqHkJd9MM02TL9ZnlODSdX3n0jwV4QYrGv1pizrtgYBTICiDXxHKjFhxpESKKPWkjniwZyQpjNB4bxR0jpB_dAX74tSA6HMArKfLIwuINEdqDHxnWbEcV9Lwg?key=UDBElswbanx1w2tkCIONab5XAD_4nXe07c-CtAqMa4ZX5NY1ZWNJRk8KAwJ3LMaRVO8n3yHmAuzqrhH9gn5Z318W0AKj2G9rSmInbS1mgrl8MginXofU5X6KSqX_EQC92va9cHWvdrysWcZcpCD-9TZyK84bs7mAxYyy?key=UDBElswbanx1w2tkCIONab5X

Figure 12: Cabinet Organization in Science Dome

While this setup is good for a human to work with. They will look around and find out what they need, it is too cumbersome for an autonomous system and will confuse them. Autonomous systems will need a cleaner organization to work efficiently. The best way to currently do this is to use a 3D printer, where you can create custom shelves and cabinets that autonomous systems can easily work around with.

Future work on this will include compiling a list of functionality models for all systems and components I documented at MDRS. These component functionality models will be used to create a digital extraterrestrial habitat model on the Control-Oriented Dynamic Computational Modeling Platform, where we can simulate different disruptions that will be present on Mars that cannot be simulated at MDRS either due to their absence (such as radiation) or for safety reasons.

7.

Title: Wearable-Based Autonomic Activity Profiles for Real-Time Cognitive Performance Monitoring in Spaceflight

Author(s): Peter Zoss

Description, activities, and results: This study will longitudinally quantify individual changes in autonomic nervous system (ANS) status via a wearable sensor in MDRS crew members to understand how our autonomic activity is associated with sequential measures of cognitive performance for predictive model development. Baseline data from the wearable devices will also be used to look at changes while living in analog isolation. The activities planned to be completed at MDRS included cognitive performance testing. This testing was scheduled to take place every other day starting from Sol 1 for a total of 6 testing sessions for each of the crew members.

This human factor project was able to get through all of its data collection period at MDRS. Cognitive performance testing has been completed for all crew members for the planned 6 tests at the MDRS. These tests occurred on Sols 1, 3, 5, 7, 9 and 11. The tests on Sol 3 had to end early due to power failure, resulting in an incomplete test for one crew member and a missed test for another. The cognitive performance test used is called the Cognition Test Battery, and it was administered to the crew via an iPad. The results from this research will be looked at further back in West Lafayette where analysis can be completed.

Mission Summary – June 9th

Martian Biology IV (MDRS Crew 298) Final Report

From June 3-10 2024, the fourth iteration of the Martian Biology program documented the animals, plants, and environment of the Mars Desert Research Station (MDRS) operational area while analysing the history and practice of Martian analog research, continuing a series of missions started in 2019. This program is a Mars Society-sponsored non-simulation effort to better understand the ecology of this unique desert region, and has expanded from a focus on the immediate vicinity of MDRS to include various sites across Wayne, Emery, and Garfield counties.
This year the crew consisted of Shannon Rupert (Director Emeritus of the Mars Desert Research Station), Samantha McBeth (field biologist and naturalist), Jordan Bimm (Space Historian and Professor of Science Communication at the University of Chicago), Jacopo Razzauti (PhD Candidate at The Rockefeller University), Olivia Drayson (PhD Candidate at University of California Irvine), and Paul Sokoloff (Botanist at the Canadian Museum of Nature). In all these endeavours we were supported by the Director of MDRS and honorary seventh crew member, Sergii Iakymov.
Our primary objective was to carry out five scientific projects, which are linked under our overall program objective to understand the ecology of the Mars Desert Research Station and its surrounding area – a unique desert ecosystem set in between well studied National Parks and Recreation Areas on Ute and Paiute Lands. These projects included an observational study of vertebrate fauna using wildlife cameras and traces, a study of invertebrate fauna with a focus on insects, investigations on the practice of astrobiology and field science at Mars analog sites, sampling for analysis of water-borne microplastics, and a collections-based inventory of the area’s vascular plant biodiversity. These various studies took place at 12 sites in southeast Utah, ranging from locales near the station to sites in the San Rafael Swell and the Henry Mountains.
The data and materials collected from this rotation will be used to support multiple planned peer-reviewed articles, including a ecological community analysis, an annotated checklist of vascular plant diversity, a paper on the natural history uncovered through vertebrate scats, tracks, and camera observations, a historical analysis of lichens in space science, a publication on water-borne microplastics at Mars analogs, and a correlation of water availability by biological diversity in the station area.
Looking forward, our team is planning on continuing our natural history surveys of the MDRS area, conducting vegetation ecology studies near the station, continuing historical research and field-based exploration on Mars analogs from a social science perspective, and connecting with local experts (such as Erin Riggs, curator of the Utah Valley University Herbarium, who visited us during this rotation) to better understand the desert and give back to local communities.

Vertebrate Zoology – Samantha McBeth
To complement opportunistic sightings of larger wildlife who call the area around MDRS home, formal protocols were introduced to the continuing ecological field work of previous missions. While the desert might seem arid and inhospitable, many mammals, birds and reptiles have left their marks on the sand, stones and streams. 5 wildlife camera traps were installed in areas of high animal traffic, near sources of water. Camera traps are stationary cameras that are triggered automatically when an animal moves into range of the motion sensor. This is the most effective technique for photographing elusive and nocturnal wildlife.
All 12 sites were surveyed for signs of wildlife. Tracks, scat, burrows and scuffs were measured and photographed, later ID’ed using references. Audio recordings of bird song were collected, and visual bird surveys conducted to get a snapshot in time of bird activity at the site. At first glance, dozens of wildlife species are present near MDRS in June, notably ravens, red-tailed hawks, swallows, horned lark, desert spiny lizards, red-spotted toads, pronghorn, mule deer, coyotes, bobcats, black-tailed jackrabbits, white-tailed antelope squirrel, Ord’s kangaroo-rats, woodrats, canyon bats, black-chinned hummingbirds, rock wrens, flycatchers, skunks, rock squirrels, prairies rattlesnakes, nightjars and great-horned owls. More species will be identified once analysis of camera data, sign collection and audio recordings is completed.
Data collection was successful. Camera traps directly at sources of water have proven the most efficient at capturing photos that allow clear identification of species, as permanent water features in landscapes tend to concentrate local wildlife into a single location. The highest quantity of information on species biodiversity was provided by tracks and scats, as desert landscapes are ideal at preserving such information long after an animal has passed through. Particularly challenging was finding BLM land that was not overtly damaged by cattle.
Moving forward, the presence and absence of wildlife species will be narrowed down to more specific locations, augmented with citizen science and may even have causality with other taxa of life forms such as vascular plants and insects found around MDRS.

Invertebrate Zoology – Jacopo Razzauti
Resuming the approach adopted in the previous two missions, the investigation of local entomofauna was conducted at each site visited. Both telescopic sweep nets and barrel pooter were used for the collection of both aquatic and terrestrial invertebrates, with a particular emphasis on mosquitoes at various life stages (e.g. larvae, pupae and adult). No oviposition traps were used this year. The collected specimens were then brought back to the science dome at the Station for further analysis and classification. Where possible, specimens collected at the larval stage were kept until completion of metamorphic cycle to aid with identification.
Over 40 specimens of mosquitoes reached or were collected at adult stage. All of these were collected at sites where non-ephemeral, mostly stagnant water was found. Interestingly, larvae of Culiseta incidens were collected in large numbers in the exact same large metal water troughs as last year, at the McMillan Spring campsite on the Henry Mountains. This indicate a high degree of sympatry for this species in this area. Adults Culex pipiens, the common house mosquito, were collected at the Fremont river site near Hanksville but not at other sites located further from human. This reflects the strong adaptation to a more domestic ecology of this species, specialized on blood-feeding on humans, compared to the other species found in the area around the station. The remaining fraction of the adult mosquitoes was mostly collected at Coal Mine Wash and awaits identification.
In addition to mosquitoes, other insects were collected at the various sites using a similar approach. Various nymphs of Ephemeroptera were collected at Hog Springs and raised in the science dome. Collection of black flies larvae (family: Simuliidae) under rocks in the flowing water of the San Rafael river at the Salt Wash site was successful this year. Comparing this with the outcome of collection of the same target in the past two years it is clear that there is an inverse correlation between the amount of larvae collected and the river discharge. Indeed, when the gage height and discharge are low (like this year and during our first mission in 2022).
Outside of the class Insecta, a large scorpion was found at the station (see photo, credits: Samantha McBeth). This finding highlights the importance of focusing on other arthropods outside of insect in future missions, such as arachnids and crustaceans inhabiting the region.

Astrobiology in Action – Jordan Bimm
My historical and sociological work is animated by two central questions. What is the history and culture of Mars analog research? And, how can historical knowledge of astrobiology and extreme field sciences benefit from and inform Mars analog research, including biodiversity surveys around MDRS? My work at the station draws upon extensive archival research in the history of space exploration, space medicine, and astrobiology. At MDRS I employ established methods from history of science and sociology of science including informal oral history interviews and participant observation. Informal oral history interviews involve engaging in conversations with researchers to access their personal stories, understandings, and remembrances of significant events. Participant observation involves assisting scientists in their work as a way of gaining first-hand knowledge and experience of scientific culture and practices. Together these methods include gathering stories about the history and everyday operations of MDRS as well as contributing to the team’s biodiversity survey in the role of a field research assistant.
A major focus has been on the natural history and biology of lichens. Commander Paul Sokoloff is a lichen expert and has been my primary interlocutor on this topic. Few realize that unassuming yet resilient lichens are significant for space history, the history of astrobiology, and the cultural history of Mars in particular. Between the 1930s and 1965 the scientific consensus about the possibility of life on Mars is that it did exist but mainly took the form of lichens. Today few remember this intermediate moment between American astronomer Pervical Lowell’s fin de siecle belief in an intelligent civilization and our much more modest post-1965 hopes for detecting some evidence of (likely past) microbial life. Fieldwork at MDRS focused on surveying local lichen biodiversity contributes to the history of this missing chapter in the history of astrobiology, ideas about life on Mars, and early life detection techniques focused on lichens. During this time between Lowell and NASA’s Mariner 4, Mars was referred to as “The Green and Red Planet.” This work aims to furnish an environmental and scientific history of this mid-century “green Mars” which animated planetary exploration at the dawn of the Space Age.
In addition to gathering data for Astrobiology in Action and assisting the crew in their fieldwork, I also served as Crew Journalist, crafting compelling science narratives based on each day’s activities, challenges, and findings to interest a wide popular readership. I look forward to continuing this important work in future missions under the Martian Biology program at MDRS.

Water Microplastic Analysis – Olivia Drayson
Plastics are now infiltrating everywhere on Earth. The ~350 million tonnes of plastic waste produced each year will break down into microscopic pieces, ranging in size from 1 micrometer to 2.5 millimeters. These pieces are small enough to be brought up into the atmosphere, and are now being deposited by wind and rain in even the most remote parts of the planet. This includes snow, sea ice and sediment in the Arctic, fresh snow in the Antarctic, and even air and water in protected lands in the US.
In 2023, as part of the science directorate of FMARS15 – the analogue astronaut mission to the Flashline Mars Arctic Research Station in Nunavut, Canada – samples from creek, snow, lake, river, sea ice and ocean water were collected to look for microplastics. As part of this investigation, water samples were also collected by Crew 298 from sources surrounding MDRS. The samples were collected from both moving water at South Creek, Salty Creek, Salt Mine Creek and the Fremont River, and still water in pools at Coal Mine Wash, Cowboy Corner and Hog Springs.
These samples will be transported to the lab for analysis. First a fine filter is used to isolate the particles, then an acid or an alkali is used to “digest” any organic material. After removal of all organic matter, a red dye is applied that binds to plastic and fluoresces under blue light. After visual inspection, if plastics are found they will be characterised using infrared spectroscopy, this can help determine the likely source of the plastic particles.
The challenge with conducting microplastic detection is avoiding contamination with plastic collection products. As soon as you start to look around, you’ll find plastics in almost every consumer product, from the linings of soda cans to the lids of glass tupperware. Therefore care has to be taken to use containers made from non-plastic materials. For this study, glass mason jars with metal lids were used to avoid this problem.
If microplastics are detected, future expeditions can build on this study to collect larger volume samples from more collection sites, and also collect sediment and soil samples. Given that microplastics have already been detected in locations within Utah, it is very likely that the water sources around MDRS are no different. It is sad to think that perhaps humanity has already contaminated the moon and mars with plastic.

Botany – Paul Sokoloff
Collections-based research continues to be the best way to understand the flora of a given area, as the preserved specimens provide durable proof that a given species was found growing at a specific place and time. Flattened in a plant press and set out in the desert heat until dry, these two dimensional plant specimens will be deposited at the National Herbarium of Canada (CAN) at the Canadian Museum of Nature in Ottawa, Ontario, Canada, and at the Utah Valley University Herbarium (UVSC) in Orem, Utah, USA. Paired with labels containing data including the species name, location, date, and habitat information, these sheets will be useful to botanists for decades and centuries to come.
Crew 298 collected 80 vascular plant specimens from the 12 locations we surveyed. This included both recollections of taxa previously documented for the MDRS area (which are useful for documenting the continued existence of a population or fluctuations within a species through time), and species newly encountered by our team within the study region. These specimens will be sent to the Ottawa via colleagues at Eastern Washington University, where they will be identified using a variety of literature sources, including A Utah Flora, Flora of North America North of Mexico, The Desert Plants of Utah, and other primary literature sources. Additionally, each specimen collected was subsampled for high-quality DNA preservation – leaf tissue from each collecting event was dried in silica gel and will be stored at cryogenic temperatures in the National Biodiversity Cryobank of Canada, where they will be available for future genomics projects.
Some of these 80 specimens, such as the Green-Stem Paperflower (Psilostrophe sparsiflora) and Palmer’s Penstemon (Penstemon palmeri) were encountered in locations previously botanized by the Martian Biology Team. Others, like Cliffrose (Purshia mexicana) and Single-leaf Ash (Fraxinus anomala) were found in areas newly examined by our team. Though the pace of new species encounters is slowing as the program is in its fourth year of botanizing the station’s operational area, these new taxa hold promise of further species detection with additional work.
In the immediate future we plan on writing an annotated checklist of the vascular plants collected in 2022, 2023, 2024. Altogether, these 284 specimens include a minimum of 32 taxa occurring within the station area not yet covered by one of our “Martian Floras”. Moving forward, we are planning on using these updated checklists to support vegetation ecology work at the station.

Ecology – Shannon Rupert
So how do all these disparate things—mosquitos, plants, animals, microplastics, astrobiology and Mars—come together to inform science? What we learn from them, the patterns we see in their lives alone and with each other, in a place where the geology is a true analog for what we see on Mars, gives us the opportunity to learn how to explore and recognize life on Mars. These patterns give us a spatial explanation for how life organizes itself, and what it needs to develop from individual species into a biodiverse ecosystem.
These early studies will, in future years, be combined into a larger dataset that we can analyze using multivariate community analyses to develop a model of how we might recognize a biological landscape as small as a biofilm or as large as a planet. And as a bonus, it adds to the information about landscapes here on Earth that are constantly changing in reaction to things like climate change and human interactions.

The Martian Biology 2024 Team. From left to right: Jacopo Razzauti, Sergii Iakymov, Shannon Rupert, Samantha McBeth, Jordan Bimm, Olivia Drayson, and Paul Sokoloff.
AD_4nXc0fhGKFJCM74ZOy3gmRWKCYH4uncos2KalPd5WrzvywQ-XCHqKA5i4qAgbkHuv9LtOPYHvAu0IdNcO2qXsw92XLklgYFzb-vQecPR2qA5RznYKKXpGbdgS6Cf82y8ZMlW7o6DksEYoi-BPM9OjnrzykH_0PLyKkZ6QNppBGbi9re-5QUgzWMY?key=NEkhHw8H4CkKjkXFpBmKsw

Crew 299 Mission Summary Report – 24May2024

Title: Testing Approaches to the Analysis and Utilization of

Martian Regolith

Members: Aravind Karthigeyan, Noah Mugan, Prakruti

Raghunarayan

Martian Materials Report

Introduction : Our mission focuses on the detailed analysis of Martian samples to understand the geological history and composition of the Martian surface. This involves the collection, processing, and examination of various samples, including fine Martian soil, White Mound samples, and igneous rocks. By employing a combination of grinding, exfoliation, and microscopic examination techniques, we aim to uncover insights into the mineralogical and geological characteristics of these materials.

Sample Collection and Processing: To date, we have collected a diverse range of samples from various locations around the Mars Desert Research Station (MDRS). These samples include:

  1. Fine Martian Soil: 4 in MMS-1 Mojave Mars Simulant from The Martian Garden
  2. White Mound Samples: These samples were taken from distinct white mounds observed in the region, suspected to have unique mineralogical properties.
  3. Igneous Rocks: Found during an EVA, these rocks were carefully extracted and prepared for further analysis.
  4. Marble Ritual Sample: A set of rocks found near marble ritual that are of interest

Methodology: Our analytical process involves several key steps:

  1. Grinding and Exfoliation: The collected bulk materials are ground into a fine powder to facilitate further examination. This powdered substance is then exfoliated to isolate individual layers.
  2. PDMS Integration and Microscopic Examination: The exfoliated samples are added to Polydimethylsiloxane (PDMS) and observed under a microscope. This helps us determine if the samples separate into bulk material, bilayers, or monolayers. For instance, thinning observed in fine Martian soil and White Mound samples often indicates the presence of bilayers.

Key Findings:

  1. Thinning in Samples: The fine Martian soil and White Mound samples exhibited significant thinning under microscopic examination. This phenomenon typically suggests the presence of bilayers, providing insight into the structural composition of these materials.
  2. Analysis of Igneous Rocks: We have successfully cut into the collected igneous rocks and initiated age determination studies. By examining the geological features and comparing them with established geological studies, we hope to uncover details about the rock’s formation and the historical activity in the region.

Discussion: Our findings thus far indicate promising directions for further research:

  1. Presence of Bilayers: The identification of bilayers in Martian soil and White Mound samples suggests complex mineralogical processes at play. Understanding these processes can provide valuable information about the environmental conditions on Mars.
  2. Geological History: The analysis of igneous rocks offers a window into the geological history of the area. By determining the age and formation processes of these rocks, we can infer past volcanic activity and other geological events that shaped the Martian landscape.

Applications and Future Work: The techniques and findings from our current research have several practical applications:

  1. Geological Mapping: The ability to identify and analyze bilayers and other structural features in Martian samples enhances our capability to map and understand the geology of Mars.
  2. Spectroscopy Integration: Building on initial compositional analysis through spectroscopy, our approach adds a second layer of geological investigation. This combined method can provide a more comprehensive understanding of Martian terrain.
  3. Historical Insights: The age determination and analysis of igneous rocks will contribute to a broader understanding of the geological timeline and activity on Mars.

Conclusion: Our end-of-mission analysis has yielded significant insights into the mineralogical and geological characteristics of Martian samples. The presence of bilayers in soil and mound samples, along with the ongoing study of igneous rocks, offers promising directions for further research. These findings not only enhance our understanding of Martian geology but also pave the way for future exploration and analysis techniques on Mars.

Martian Radiation Report

Introduction : One of the critical aspects of ensuring the safety and well-being of a crew in a Martian environment is the ability to detect and respond to radiation threats in their immediate surroundings. Due to Mars’s lack of a substantial magnetosphere and atmosphere, the planet is exposed to higher levels of ultraviolet radiation and cosmic rays compared to Earth. These factors contribute to increased radiation exposure, posing significant risks to human health.

Objective : The primary objective of this research was to monitor radiation levels in various locations and conditions on Mars using a Geiger counter. By doing so, we aimed to identify areas and situations with elevated radiation exposure and develop strategies for quick response and mitigation.

Methodology: We utilized a Geiger counter to measure radiation levels, recorded in counts per minute (CPM), at different sites around the Mars Desert Research Station. Specific attention was given to areas with potential radiation sources and during environmental conditions that could influence radiation flux.

Key Findings :

Petrified Wood Samples : One significant finding was the detection of increased radiation levels in petrified wood samples. These samples exhibited higher CPM readings, likely due to the absorption of heavy metals during the petrification process. This discovery underscores the importance of analyzing geological samples for radiation content before handling or transporting them.

Windy Periods and Dust Storms : Another notable observation was the increase in radiation flux during windy periods, which are analogous to Martian dust storms. These conditions stirred up dust particles that could carry radioactive elements, leading to higher radiation readings. Understanding the correlation between wind activity and radiation levels is crucial for planning safe EVAs and ensuring crew protection during adverse weather conditions.

Discussion : The ability to quickly detect and respond to increased radiation exposure is vital for crew safety on Mars. The Geiger counter proved to be an effective tool for real-time monitoring, allowing the crew to take immediate action when necessary. The findings from this study highlight the need for continuous radiation monitoring and the development of protocols to mitigate radiation risks.

Conclusion: This research underscores the importance of radiation monitoring in a Martian environment. By identifying and understanding the sources and conditions that lead to increased radiation exposure, we can better protect the crew and ensure their safety during missions on Mars. Future studies should focus on refining monitoring techniques and developing advanced protective measures to mitigate the risks associated with radiation exposure.

Martian Agriculture Report

Throughout our mission, we grew a collection of 12 radishes in three separate soil types:

  • 4 in standard potting soil (Our control group)
  • 4 in MMS-2 Enhanced Mars Simulant from The Martian Garden
  • 4 in MMS-1 Mojave Mars Simulant from The Martian Garden

The last two samples are very accurate replications of the soil rovers have analyzed on Mars. Our soil was only supplemented with vermicompost, and we hoped to analyze the nutritional differences between the plants following the conclusion of our mission.

These radishes were planted three weeks before the start of our mission, and by the time we arrived every pot had healthy sprouts. There were already two radish bulbs from our potting soil samples and we could see a radish root widening in one pot with analog Martian soil, indicating the possibility that Martian soil could potentially sustain life with some supplements.

Unfortunately, problems arrived when we “landed” at MDRS. Upon arrival, we placed the radishes in the Science Dome’s grow tent. However, after several days, we observed that many plants were exhibiting drooping leaves with black spots. We suspected that this may be a problem with the grow tent, given that the problems emerged so soon after the change in environment. As such, we moved the radish samples onto a table in the science dome and placed a desk lamp above to provide wherever light we could.

After moving the samples out of the grow tent we observed each plant become healthier again, with leaves standing tall again and stems growing thicker. We also cut off the leaves with black spots to prevent the spread of any disease. However, while this change did save the plants from dying, it also seemed to halt their growth. We believe that the desk lamp did noy provide adequate light to the radishes, and as such they were not able to grow beyond their state from when we arrived. We tried moving several samples back to the grow tent while leaving the flap open, in case the stale air was what caused the problem before. However, almost immediately we noticed that the tent plants grew sick again and the black spots reappeared, leading us to move all plants back under the desk lamp. Our findings indicate that some aspect of the grow tent is harming the radishes, and we could not find a way to change any settings on the light or fan.

By the end of our mission, the radishes had not grown beyond their state from when we arrived. While our experiment did not prove that supplemented Martian soil can sustain life, we do suspect that a replication of this experiment could be successful due to the fact that many of our samples were healthily growing prior to MDRS, under a sufficient lamp and without the harmful grow tent.

Despite the problems we encountered, we do still have some qualitative findings.

Results:

  • The potting soil grew the healthiest radishes, as expected.
  • Radishes grown in the MMS-1 Mojave Mars Simulant also fared reasonably well, and we observed a full radish root growing in one pot before arriving at MDRS.
  • Radishes grown in MMS-2 Enhanced Mars Simulant did not grow nearly as well as their brethren. Samples from this group had the thinnest stems and smallest leaves, and were the first to die when placed in the grow tent.

The MMS-2 Enhanced Mars Simulant is the more accurate recreation of Martian soil, which hints that true Martian soil may be a poor soil for crops. However, soil supplements may fix whatever deficiencies there are. Our radishes still produced leaves despite all the roadblocks, and we plan on sending these leaves to a lab for nutritional analysis. If our samples are of sufficient size, we can expect to see detailed reports of the nutrients in radishes from each sample, which will allow us to plan what ways astronauts may need to supplement soil for actual agriculture on Mars. This work shows promise for future advancements in testing Martian agriculture, and future experiments with a more thoroughly-tested environment and a larger sample size will hopefully provide even firmer results.

Project : Environmental Mapping and Pathfinding using

Drone-captured Data

Team Member : Rishabh Pandey

Engineering Report

The primary goal of this project was to develop accurate 3D models of the HAB’s surrounding environment using drone-captured footage and photogrammetry software, aiming to support the development of an AI-based pathfinding algorithm for safe and efficient navigation during extravehicular activities (EVAs). Throughout the mission, significant progress was made in capturing and processing video footage of the target environments around the HAB, including paths along Cow Dung Road and more remote walking EVA locations. The footage was processed with photogrammetry software, generating detailed 3D models which were then verified for accuracy against existing topological maps and self-measurements. Multiple drone flights successfully captured comprehensive video footage of these environments, and 3D models were produced by stitching together video frames. These models were verified for accuracy through comparison with topological maps and direct measurements, and efforts were made to ensure they were free from incorrect artifacts and inconsistencies. Preliminary pathfinding algorithm development was undertaken, applying algorithms like Dijkstra’s to identify possible paths in sandbox environments. This phase demonstrated initial success in controlled settings, establishing a foundation for real-world application.

Despite these successes, the pathfinding algorithm encountered significant challenges when applied to the real-world environment. The environment exhibited abrupt changes from hard-packed soil to loose sand, causing large variations that impacted algorithm performance, leading to inaccuracies in pathfinding predictions as the algorithm struggled to adapt to the inconsistent terrain. Additionally, the rovers’ operational range and power capabilities were not adequately accounted for in the algorithm, resulting in impractical path suggestions. The combined walking and climbing ability of the crew further complicated route planning, as the algorithm failed to balance these factors effectively. Unexpected road compositions and build complexities introduced additional variables that the algorithm could not predict or accommodate, collectively hindering its reliability and accuracy in real-world applications. While the AI pathfinding algorithm did not perform as expected in the mission’s final phase, valuable insights were gained regarding environmental mapping and the complexities of real-world navigation. Future efforts should focus on enhancing the algorithm’s adaptability to diverse and changing terrains, incorporating comprehensive data on rover capabilities and crew mobility to improve route planning accuracy, and developing more sophisticated models to better predict and account for unforeseen environmental factors. The work completed during this mission provides a strong foundation for further development and refinement of environmental mapping and pathfinding technologies, with the potential for significant improvements in future missions.

Title: Photometric Study of White Dwarf BD-07 3632

Crew Members: Avery Abramson and Kristina Mannix

Astronomy Report

Introduction : We intend to continue capturing and analyzing the light curves of BD-07 3632, a WD with limited data. This star is notable for its bright magnitude and location in a binary system with an RD. With the light curves obtained from this project, more insight into its properties can be revealed. BD-07 3632 is an excellent candidate with a bright magnitude at 11.90 V. Its stellar coordinates are 13 30 13.6370112733, -08 34 29.46. It also has minimal research; on NASA ADS, no papers have been published on this WD, nor is there research from AAVSO.

Objective and Methodology : As this star is under-researched, we plan to deduce if it is pulsating. Discovering its pulsation mode can help us understand the star’s composition, density, temperature, and layering. To do this, we will continue using a telescope with assistance from its tracking software to produce data. Then, we will continue removing noise from the data caused by factors such as atmospheric clouds by using the comparison stars. The three comparison stars we are using include HIP 65856 (Mag 8.8, 13h 29m 58.42s, -14 deg 0′ 5.4″), Tycho 5551:631 (Mag 9.9, 13h 29m 48.75s, -13 deg 40′ 37.4″), and Tycho 5551:421 (Mag 9.86, 13h 29m 35.62s,

-13 deg 55′ 35.5″). These images are taken with a primary focus on the photometric V filter at a 240-second exposure. With this data, we are using an in-house tool developed in Python and its appropriate modules to generate the light curves of the WDs with time vs. intensity plots. To clear up the data, we are then doing a Fourier analysis of the time series light curve through the power spectrum. Following this, we are finding the amplitudes and try to deduce the pulsation mode and the intensity.

Key Findings : This project is still in progress and will continue on Earth. Once concluded, findings will be presented in the future.

Discussion : The data from this project may confirm or refine findings from other related works. It may also influence future studies on BD-07 3632 and other related WDs. Additionally, we may be able to deduce other characteristics of these WDs that were previously undiscovered. Overall, our research has the potential to increase our understanding of WDs.

 

Mission Summary – May 24th

Mission Summary

Mission: 299

Dates: 05-12-2024 – 05-24-2024

Author: Prakruti "Pari" Raghunarayan, Mission Commander

We were merely freshmen in college when we began working towards this. Our now Executive Officer, Avery Abramson, came to me with a great idea to get us ambitious undergraduates to work on making progress towards sustainability and space exploration. Knowing other incredible people with similar interests, we assembled the group of people at the University of Texas at Austin that you know as the Bevonauts.

We had many meetings and brainstorm sessions before finally settling on and working towards what became our proposal: "The Frontiers of Martian Geology and Spectroscopy." The goal of this project was to essentially be able to bring back spacecrafts sent to Mars making for sustainable space travel. The sustainability aspect increased when we decided if we want to get to Mars, we should also be able to inhabit it and make use of the natural resources. The three subprojects were born there: Aravind, Noah, and I would work on making use of natural materials and complementing it with what we know and use to grow and sustain life on Mars, Rishabh would work on drone mapping that can be purposed for search and rescue, and Avery and Kristina would make progress on the space weather and solar physics front.

Towards the end of the mission, despite a few technical hiccups, Kristina and Avery made great progress conducting research on Mars. They learned about solar and robotic imaging, as well as image processing. After the conclusion of this mission, the scientific research will continue, as there is extra time saved on the SkyNet account for additional observations via the Robotic Observatory in New Mexico. There are also two more images to process from the Musk Observatory. Avery and Kristina enjoyed their time at MDRS and look forward to finishing their research projects on Earth.

Anomalies were not just present in the GreenHab. As expected of any space station, maintenance was a primary responsibility of the Crew Engineer – a duty at which they excelled at. During the 12-sol mission, the Crew Engineer repaired and replaced Hab Tunnel zip ties, and the astronomy laptop boot drive. Apart from corrective maintenance, the engineer made sure that the Hab was functioning nominally by monitoring and emptying the toilet, calculating water levels, and inspecting the entirety of the station’s facilities in the midst of uncertain power supply.

Lastly, on the materials front, Noah, Aravind, and I made significant progress–but are not yet done. We have determined the mock grade Martian soil would actually be alright to sustain life as we know it if complemented with whatever nutrient they are missing. We tested this on radishes. Usually, this can be done with cardboard, organic matter, or something like clay, silt, or sand (depending on the deficiencies). We were also able to exfoliate the materials to the point where they can take some samples from MDRS and get them to spectroscopy labs and have them measured, We will learn the uses of natural material from this and be able to take these principles and studies to Mars!

As I write this, I am aware of the great progress my great crew has made. I am grateful to have such a young, ambitious crew. It gives me great hope for the future of space exploration. We have ventured off to Mars and started this journey when we were literally children (like genuinely) and as we arrive back to Earth we come back as adults, knowing that the responsibility of sustainable space travel lies in the hands of our generation. We are grateful to have contributed to something bigger and hope to do more.

Mission complete. Mission successful. Thank you.

Mission Summary – April 26th

Mission Summary
Mission: 297
Dates: April 15 – April 26, 2024
Author: Pawel Sawicki (Commander)

“Welcome to Mars” was the first thing the 297th Mars Desert Research Station crew, named
Janus I, heard when their mission commenced shortly after noon on April 15th. With Janus I being the Roman god of duality, transitions, and beginnings, this opening exclamation by
Mission Support was a fitting ribbon-cutting for a crew where five out of 6 members had never
traversed the analog Martian regolith before.

With such a novel crew, the first handful of sols were especially vital in familiarizing ourselves
with the nominal procedures of the Station. During the beginning timeframe of the mission, the crew made sure to become acquainted with the expected duties of their roles, layout of the
various Station facilities, and functionality of the EVA suits and rovers. This first set of sols also
established the groundwork for the various research projects, with initial objectives completed
related to all projects.

The Janus I crew quickly became accustomed to their Martian home, as the sols gradually
became more habitual and routine. Mornings were often filled with EVAs and afternoons
consisted of report writing, card games (Hanabi, Uno, and President), music courtesy of Dave,
space-themed movies, and a bi-weekly Thursday trivia night. It also turned out that the crew
was composed of world-class cryodessication chefs, albeit they were the only chefs on this
planet. During the 12-sol mission, meals composed of an assortment of cuisines were artfully
crafted: ceviche, crepes, casserole, Japanese curry dish, Jambalaya, Southwestern beans and
rice, spaghetti, soupe au fromage et aux légumes, soy peanut couscous, shoyu ramen, and
vegetable stir fry.

Many of these meals utilized the available GreenHab resources. During the mission, the
GreenHab officer harvested a veritable cornucopia of vegetables: radishes (681 g), cherry
tomatoes (534 g), cucumbers (471 g), red cabbage (309 g), kale (220 g), green onions (53 g),
carrots (45 g), parsley (34 g), sage (12 g), lettuce (6 g), thyme (5 g), and rosemary (3g). Such a plethora of vegetables came as a result of being the last crew to utilize the GreenHab this
season, a privilege which also came with the expected responsibility of tearing down the
GreenHab on our last day. Maintaining the GreenHab during its last few weeks of the season
did not come without added difficulties for the GHO. Due to frequent power shortages, the
automation functionality of the fan was unreliable, resulting in required manual intervention to
maintain the GreenHab internal temperature within a desirable range.

Anomalies were not just present in the GreenHab. As expected of any space station,
maintenance was a primary responsibility of the Crew Engineer – a duty at which they excelled. During the 12-sol mission, the Crew Engineer repaired Suit 2 (stuck valve), Suit 3 (loose
power connection), Suit 4 (missing cable ring), Suit 5 (ventilation electrical connection), Suit 11
(poor battery life), replaced Hab Tunnel zip ties, and tightened key switches on all 4 rovers.
Apart from corrective maintenance, the engineer made sure that the Hab was functioning
nominally by monitoring and emptying the toilet, calculating water levels, and inspecting the
entirety of the station’s facilities in the midst of uncertain power supply.

While the crew masterfully executed their positional duties, they never let up on successfully
conducting their research. Janus I investigated many sub-disciplines of science and
engineering, specifically geological field spectroscopy, operations of nuclear power systems,
developing smart sensor-based systems, and Martian-appropriate advancements in IT, and
were participants in research projects pertaining to isolated, confined, and extreme
environments and human-robotic interactions. With three of these projects relying heavily on
EVAs for expanding the sample size, the Janus I crew conducted an astounding total of 18
EVAs, which lasted a cumulative 42 hours. For more insight into the many achieved research
objectives of Mission 297, it is recommended to read the End-of-Mission Research Report.

As the T- minus clock winds down for the return launch, with a heavy-heart we say goodbye to
our Martian home of 12-sols and look forward to hearing “Welcome back to Earth”.

Mission Summary – April 12th

Mission summary Crew 296
Author : Loriane Baes
3, 2, 1… “Atlas mission Is back! It was a complete success!”
Crew 296 landed on the surface of Mars at midnight Earth time on March 31, 2024 and the mission ended on April 12, 2024. Twelve sols elapsed during which we took Mars as our habitat.

We quickly familiarized ourselves with our new home and, after a good night’s sleep, immediately started work on our experiments and spacewalks. The first two days were very busy, with report writing, spacewalks, the start of experiments, tasks to be accomplished in the MDRS, adapting to lyophilized food, all facets of accommodating to the new lifestyle required on Mars. Moreover, the next three days, as the first two, were also very busy, but we managed our tasks better to take time to enjoy the fact that we’re on Mars, the beautiful scenery and each other’s presence with team-building activities, card games and cooking together.

The days were punctuated by EVAs where Romain’s experiment involved determining the required frequencies to use a new digital system, Louis’ experiment involved 3D mapping of the terrain using drones, and Maxime’s weather station studied the movements of dust in the simulation, comparing them to Mars data. When the team wasn’t on EVA, Hippolyte took the opportunity to conduct his experiment on the implementation and interfacing of an intelligent voice assistant. The biomedical team also had a busy schedule with saliva, blood, urine, and stool samples, supplemented by self-questionnaires assessing sleep and stress. The goal was to evaluate the impact of LH supplementation on stress associated with confinement and sleep disturbances. The agenda was full, but as the crew likes to say, "science first."
Apart from scientific experiments, life on Mars involves a number of responsibilities. As the station’s engineer, Louis never failed in his duties: emptying toilets, calculating water and repairing various mechanical problems. As much as we appreciated his work and the security he provided, it was always a real challenge for the team to discuss with him the possibility of taking a shower, ruining all his water predictions. Hippolyte also did his duty by pampering the GreenHab all day long, allowing us to add great flavors to each of our dishes. Maxime, the crew’s astronomer, spent most of his time in the observatory, capturing spectacular images of the sun and sky. He even shared his passion with us by helping us observe a solar eclipse. Imane, Crew Safety, never failed to get a message across when someone had a sore back on the way back from EVA, and was always ready to help listening to our each and every little whining. The whole simulation would not have been so immortalized without Alba’s daily photos and videos. Despite the amount of work involved in her job as journalist, Alba always rose to the occasion. Arnaud, as Crew Scientist, proved to be a central pillar of respect for the various studies. SciencesDom became his second home, where he spent a lot of time preparing samples for the biomedical team. The team would not have been complete without Romain and Loriane, who were both in charge of the crew, ensuring that commitments were respected, as well as the team’s benevolence and cohesion.
As part of Loriane’s psychological experiment to study grouped confinement and, more specifically, the stress dimension, the team cut off all social networks and contact with loved ones. The team therefore had to demonstrate their autonomy and creativity, by proposing various playful team-building activities. In the afternoons, some of the team liked to meet up at the Science Dome for their sports session. Despite the limited space, we had no shortage of creative ways to let off steam. We also enjoyed the evening events. We try to innovate each evening with a new and stimulating activity. Card games, board games, mime games, personality tests, general knowledge tests and even a light painting session. The crew were able to take advantage of special moments to get closer to each other, creating real group cohesion.
The days were also punctuated by end-of-day meetings. We usually hold a meeting before dinner to plan the next day, review the simulation and experiences, and discuss how everyone was feeling. For us, the meetings are a privileged moment when we all get together and everyone is free to express themselves in a friendly atmosphere.
We weren’t expecting it, but we enjoyed the lyophilized food. It has to be said that we have some excellent cooks on the team. Loriane and Imane have become the chefs in the kitchen, creating varied, delicious meals every day that we’d never have imagined with this type of food. At the end of each meal, Imane would always prepare a sweet dessert with so few ingredients. She’s a real magician.
Time was also devoted to making videos. We’re keen to share our experience, so we’ve produced videos for several of our collaborators to share on their networks. The content of these videos explains the station, the way of life on Mars and our experiences. We also produced two live broadcasts at the end of the simulation with a major Spanish TV channel and the Mars Society Belgium. These exchanges allow us to share our passion for space exploration and attract the curiosity of some. We’ve also made videos for our aftermovie, so that when we watch them, we’ll be able to recapture the magic of the experience.

We’re leaving Mars on April 12 with lots of memories. We’re all very grateful to have had the chance to discover Mars and its complexity. We’ve all learned a lot from our scientific experiments as well as about ourselves. For some of us, it’s a first step towards our dream of one day becoming astronauts. This experience on Mars has been an important milestone in our journey, and we take with us unforgettable memories and valuable lessons.

Mission Summary – March 29th

MDRS Crew 295
Mission Summary: Mars Desert Research Station Simulated Mission

Introduction:
Our MISSE course takes students to the Mars Desert Research Station (MDRS) on a six-day simulated mission, serving as a unique platform for university students to undergo cross-training in wilderness medicine and human spaceflight principles. This immersive course aimed to blend didactic lectures with hands-on simulated medical scenarios, challenging students to apply their knowledge and skills in a Martian analog environment. Over the duration of the mission, students encountered a series of simulated emergencies and operational challenges, providing invaluable opportunities for learning, growth, and skill development.
A group of people in orange jumpsuits sitting in a tent Description automatically generated
Day 1: Retrieval of Crashed Satellite and Radio Relay Repair
The mission commenced with the crew being tasked to retrieve a crashed satellite and repair a radio relay, simulating the operational demands of a Martian exploration mission. Despite meticulous planning, one crew member suffered an ankle injury during the retrieval process, underscoring the importance of safety protocols and emergency response training. The incident prompted the crew to assess their communication and leadership strategies, laying the foundation for collaborative problem-solving and effective decision-making throughout the mission.
A group of people in orange jumpsuits working in a room Description automatically generated
Day 2: Design and Launch of Rocket with Medical Supplies
On the second day, the crew undertook the design and launch of a rocket carrying vital medical supplies to support another crew in need, mirroring real-life scenarios of resource allocation and interplanetary collaboration. This task required precise planning, teamwork, and coordination to ensure the successful delivery of supplies to the designated location. As the rocket soared into the Martian sky, the crew celebrated a significant milestone in their mission, showcasing their engineering prowess and adaptability in a simulated space environment.
A group of people in orange jumpsuits and helmets standing in a desert Description automatically generated
Day 3: Summit Attempt and Emergency Response
The third day saw the crew attempting to summit a local peak to set up a relay, presenting physical and logistical challenges akin to Martian exploration. Tragically, one crew member fell and broke their femur during the ascent, prompting an immediate shift in focus to emergency response and medical evacuation procedures. The incident tested the crew’s resilience and ability to remain calm under pressure, highlighting the critical importance of wilderness first aid training and effective communication in managing medical emergencies in remote environments.
A group of people in orange jumpsuits and helmets in a desert Description automatically generated
Day 4: Simulated Fire and Emergency Evacuation
A simulated fire outbreak on the fourth day thrust the crew into a high-stakes scenario, requiring swift identification, rescue, and extinguishing efforts to safeguard the habitat and its occupants. As flames engulfed a section of the habitat, the crew mobilized into action, implementing firefighting protocols and coordinating evacuation procedures. Despite the intensity of the situation, the crew demonstrated remarkable composure and teamwork, successfully containing the fire and preventing further damage to the habitat.
A group of people in orange jumpsuits Description automatically generated

Day 5: Search and Rescue Mission
The penultimate day of the mission presented the crew with a search and rescue mission, simulating the challenges of locating and assisting crew members stranded in remote terrain. Utilizing their navigation skills and strategic planning, the crew embarked on a coordinated search operation, eventually locating and safely evacuating the stranded individuals. The successful outcome of the mission underscored the importance of preparedness, adaptability, and collaboration in responding to unforeseen emergencies in hostile environments.

A group of people in orange jumpsuits walking in a desert Description automatically generated

Day 6: Soil Testing and Future Habitat Location Identification
On the final day of the mission, the crew undertook soil testing to identify a suitable location for a future habitat, employing an explosive charge and seismometer to assess soil density and composition. This task required precision and scientific acumen, reflecting the multifaceted challenges of Martian exploration and habitat construction. Through meticulous data collection and analysis, the crew contributed valuable insights into potential habitat sites, laying the groundwork for future missions and scientific endeavors on Mars.

A group of people in orange jumpsuits Description automatically generated

Conclusion:
The Mars Desert Research Station simulated mission provided an immersive and transformative learning experience for university students, fostering interdisciplinary collaboration, leadership development, and hands-on application of technical skills. Through simulated emergencies and operational challenges, students gained invaluable insights into the complexities of Martian exploration and the demands of spaceflight missions. As they navigated through adversity and uncertainty, students emerged as more confident and effective team members, poised to tackle the challenges of future space exploration with skill and determination.
A group of tents in the desert Description automatically generated

Mission Summary – March 21st

Crew Commander: Leanne Hirshfield
Crew Journalist: Emily Doherty
Health & Safety Officer: James Crum
Crew Engineer: Marta Ceko
4QNR_OEBFLTwh3SzR4P6FX_i-lsFB8migZg9yhCezGPuVn8krHi-F2ygdhVq7UR7NTPy3IqRRa0ymi9tCtYYl6nq2UwtmO0sBTzydbMd8pMFdhTbbvYQ76gcJ8F74_nUoO9DtwX72jZHZDZmCThaoA
Introduction
Crew 294 was made up of a group of researchers from the University of Colorado, Boulder with expertise in human performance, AI, and cognitive neuroscience. We came to MDRS on a research scouting mission as part of a Multidisciplinary University Research Initiative (MURI) project funded by the Air Force Office of Scientific Research. The title of our project is: “Cognitive Security and Risk Mitigation: A Theoretical Framework, Supporting Neurophysiological Studies, and Interactive Deep Learning Models in Sparse and Dense Information Environments.” Cognitive security refers to protecting humans from information-based threats that aim to disrupt cognitive processes such as reasoning and decision making. While the concept has received growing attention, research on topics relating to cognitive security suffers from several challenges: First, cognitive security is poorly conceptualized, lacking a consistent definition and clear, coherent specification of indicators. Research relevant to cognitive security is highly fragmented within and between different scientific fields. Further, cognitive security is particularly difficult to disentangle when we consider the complex (and understudied) ways that the information density spectrum affects decision-making. For example, the unique cognitive security challenges posed by low-information density environments such as space and the arctic are likely to be very different from high-information density environments such as heterogeneous Human-Agent Teams operating with maximum communication and information density channels. To address these challenges, our goal is to support humans to maintain cognitive security across a range of information density environments in a variety of operational environment. Our time at MDRS was an invaluable resource to help our research team to better understand the unique challenges faced by teams in space and to begin the long process of designing future experiments within our project.
Our team has expertise with functional near-infrared spectroscopy (fNIRS), which can take non-invasive measures of the blood flow in the brain (similar to what one could get from a fMRI scanner).While fMRI represents the gold standard for measuring the functioning human brain, the fNIRS device collects similar measures (from the outer cortex), and has been implemented wirelessly, allowing for measurements to be taken in field environments. We brought with us two fNIRS devices, Tobii Eyetracking Glasses, and Bionomadix physiological sensors (for EDA, heartrate, respiration) and ran pilot studies to see how well we could record quality data in field contexts at MDRS, considering range of sensors, quality of data in different movement and noisy scenarios. Figure 1 shows an overview of areas on MDRS campus where we had strong signal quality.

DFI23CKCWJvDa4p7DV5S8QwRe29zVsFG8zPsWO163Z0USyIFaEaYY3BF_LAZCciDD8euskKZrG8DUZF2bVkKiXtO9-JUHgfn0HxoJY-ReBEHHRO47rkIk4WdvQJyvC1JeE2lbjEBzBCbLOyOS-HfgAFigure 1: Summary of range studies, where we were able to collect eyetracking, biopac, and fNIRS data, and where we had challenges of signal drop.

We also tested our capability to take eyetracking and fNIRS measures on EVA. Figure 2 below shows images from EVA#3, where we test the sensors. We wanted to not only measure the range of the sensors, but also the quality of data collected, as one challenge in using neurophysiological sensors in field settings involves an inability to collect quality data amidst such noisy and complex experimental conditions. We designed a simple experiment based around a series of ‘breath holding’ experiments. Breath holding is a great way to achieve a systemic response in the human brain, where oxygenated blood measured in the brain decreases while a person holds their breath. When they resume breathing, we see a smooth increase in oxygenated blood flow.

A couple of people wearing orange suits Description automatically generated
Figure 2. Equipped with fNIRS and eyetracking, ready for EVA!

The Figure below shows this experimental paradigm. We manipulated movement (stationary vs mobile) as well as adding a cognitive element of spatial navigation by finding waypoints during the task. Initial results suggest that we were able to achieve quality measures with the fNIRS data. The Tobii eyetracking glasses did not fare as well, and it was challenging to get pupil fixations and saccades outside of the hab. The eyetracking glasses became more of an expensive go pro😊 on EVAs. We are working already with our Tobii distributor to see if they have recommendations (or eyetracking glasses upgrades) to achieve higher quality data on EVA.

A collage of a person in an astronaut suit Description automatically generated

Figure 3. Experimental design of EVA #3.

Summary: We learned so much during our time at MDRS about the real life use cases that exist when people make critical decisions in low information density environments and we are eager to build from our findings to continue our research. Integrating neurphysiological sensors involves ergonomic, range, and data quality considerations that must be made carefully. We look forward to future work with MDRS as we continue to research cognitive security in low density environments.

Copyright © The Mars Society. All rights reserved. | Main Site