Operations Report – February 3rd

Crew 221 Operations Report 03-02-2022

SOL: 1

Name of person filing report: Luis D. Monge

Non-nominal systems: MDRS Generator is non-operational and still on inspection

Loft water tank connection presents a minor leak

Notes on non-nominal systems: Since Jan 21st, we have a 15 kW rental generator connected to our power system, meanwhile, we are working to troubleshoot the MDRS generator.

A male to male connection was bought in order to replace it in the line, but the leak it’s not in the connection, it’s in the pipe itself.

Generator: off

Hours run: 11:30

From what time last night: 20:30

To what time this morning: 8:00

List any additional daytime hours when the generator was run : 0

Solar— SOC % (Before generator is run at night) 85%

Diesel Reading – 23%

Station Propane Reading – 70%

Ethanol Free Gasoline – gallons

Water (loft tank): 30 gallons

Water Meter: units

Water (static tank) – 450 gals

Static to Loft Pump used – no

Water in GreenHab – 130 gals

Water in ScienceDome: 0 gallons

Toilet tank emptied: no

Deimos rover used: no

Hours:

Beginning charge:

Ending charge:

Currently charging:

Sojourner rover used: ASSIGNED TO DIRECTOR

Hours:

Beginning charge:

Ending charge:

Currently charging: yes

Spirit rover used: no

Hours: (before EVA) : 128.7

Beginning charge: (Before EVA)

Ending charge: (On return from EVA, before recharging)

Currently charging: yes

Opportunity rover used: no

Hours: n/a

Beginning charge: n/a

Ending charge: n/a

Currently charging: yes

Curiosity rover used: no

Hours: 134,8

Beginning charge:

Ending charge:

Currently charging: yes

Notes on rovers:

ATV’s Used: (Honda, 300, 350.1, 350.2, 350.3) not used

Reason for use: not used

Oil Added? not used

ATV Fuel Used: Gals not used

# Hours the ATVs were Used today: not used

Notes on ATVs:

HabCar used and why, where? not used

CrewCar used and why, where? not used

General notes and comments: not used

Summary of internet: Notification received on Router replacement, and it will be performed tomorrow as per instructions.

Summary of suits and radios: Radios were used during the EVAs and batteries are malfunctioning and need to be replaced.

Summary of Hab operations: during the afternoon due to high winds and low temperatures the hab temperature dropped from 22C to 18C, the wall heater in the lower deck was turned on and the temperature is back to normal, reading is 20.6C in the termometer in the wall.

Summary of GreenHab operations: Nominal

Summary of ScienceDome operations: Nominal

Summary of RAM operations: Nominal

Summary of any observatory issues: Nominal

Summary of health and safety issues: No issues

Questions, concerns and requests to Mission Support: none

Astronomy Report – February 3rd

Astronomy Report

Name: Ghanim Alotaibi

Crew: 221
Date: 3 Feb 2020

One week before the rotation, two targets were submitted. V CAS using the MDRS 14, and the Orion Nebula using the MDRS WF. In Sol 1, a picture was taken for V CAS, while the Orion Nebula request was still active. A permission is needed from the observatory director to perform photometry analysis in a picture taken before the field rotation.

In Sol 1, the crew astronomer took a pic for the astronomy laptop, the mouse and the powercord. The picture was sent by email to the Observatory Director.

MDRS ROBOTIC OBSERVATORY

Robotic Telescope Requested MDRS-14

Objects to be Imaged this Evening: V CAS and SS CYG

Images submitted with this report: Non

Problems Encountered: When the request to SS CYG was submitted in Skynet, a message appears saying that the target is not within one hour visibility within the telescope site. I was therefore unable to submit the request.

Robotic Telescope Requested MDRS-WF

Objects to be Imaged this Evening: Orion Nebula

Images submitted with this report: Non

Problems Encountered: Non

EVA Report #2 – February 3rd

Crew 221 EVA Report 03-02-2020

EVA # 2

Author: Jessica Todd (GreenHab Officer)

Purpose of EVA: The primary purpose was exploration of the immediate environment around the Hab for sites of potential geological interest and familiarity with EVA equipment for the crew members. EVA crew members also practiced proper protocols for collection of geological samples.

Start time: 14:05

End time: 15:14

Narrative: This was the first Martian EVA for two of our crew members, with the EVA led by one of our veteran MDRS astronauts. Setup was a little faster than our morning EVA, we were now a well-rehearsed team! We set off at 14:05, headed for Quarry Road along Entrance Road. We cut across country once we reached Quarry Road, headed over to the white outcroppings of Marble Ritual, and took some samples of the white powdery rocks that we will analyze back in the Science Hab. We collected several samples around the Marble Ritual area of varying rock types, practicing our field geology techniques with a rock hammer and shovel, and cataloging the various sample sites. We found some interesting rocks with a greenish hue which we look forward to analyzing back in the lab. Potential for life perhaps? Around 40 minutes into the EVA the wind started to pick up considerably, so our EVA lead made the decision to head back to the Hab early.

Destination: Marble Ritual via Quarry Road.

Coordinates (use UTM NAD27 CONUS): 518750/4250900

Participants: Jessica Todd (GreenHab Officer), Hemani Kalucha (Journalist) and Ghanim Aloitabi (Astronomer)

Road(s) and routes per MDRS Map: Entrance Road and then North on Quarry Road

Mode of travel: Walking

EVA Report #1 – February 3rd

Crew 221 EVA Report 03-02-2020

EVA # 1

Author: Jessica Todd (GreenHab Officer)

Purpose of EVA: The primary purpose was exploration of the immediate environment around the Hab for sites of potential geological interest and familiarity with EVA equipment for the crew members. EVA crew members also practiced proper protocols for collection of geological samples.

Start time: 10:16

End time: 12:01

Narrative: The EVA started 15 past the hour, the crew of three walked to the main road and from there to Marble ritual, two places where visited. A total of seven samples were collected, two at the first spot, one on the way to the second spot and four at the second spot, including three samples from single multiple layer rock wall. Upon return to the base, the samples were stored and will be cataloged.

Destination: Marble Ritual via Quarry Road.

Coordinates (use UTM NAD27 CONUS): 518750/4250900

Participants: Maria Grulich (Commander), Rawan Abdullah (HSO) and Luis Monge (Engineer)

Road(s) and routes per MDRS Map: Entrance Road and then North on Quarry Road

Mode of travel: Walking

Greenhab Report – February 3rd

Crew 221 GreenHab Report 03-02-2020

GreenHab Officers: Jessica Todd

Environmental control: Heating. GreenHab door shade cloth (40%) (30%) on.

Average Temperature: 21.33°C

8:06

Floor Unit: 19°C

09:54

Floor Unit: 23°C

12:52

Floor Unit: 21°C

14:26

Floor Unit: 30°C

14:53

Floor Unit: 21°C

18:55

Floor Unit: 14°C

Hours of Supplemental Light: 19:30 to 00:00

Daily water usage for crops: 14.7 gallons

Daily water usage for research and/or other purposes: N/A

Water in Blue Tank: 285.3 gallons

Time(s) of watering for crops: 3

08:19 = 6.3 galleons

12:52 = 0.5 galleons

18:55 = 7.9 gallons

Changes to crops: NA.

Narrative: Its Sol 1 and as today was a day packed with EVAs so plant duty was mostly just watering and checking on the status of the strawberries and succulents. I was hoping that after their deep watering last night I would find the succulent leaves nice and distended with water, however they still look a little limp. I’ve watered again, hopefully the next few days will see the succulents revive a little. Tomorrow we’ll be starting to look at growing some of our own plants for the duration of our MDRS mission. Looking forward to harvesting some of the delicious herbs for dinner tomorrow!

Harvest: N/A

Support/supplies needed: N/A

Other Notes:

Aloe and succulents on upper shelf below the heater are still dry and not distended. Gave another healthy watering, and will continue to monitor.

Sol Summary -February 3rd

Sol:1

Summary Title: Welcome to Mars

Author’s name: Maria Grulich, M.Sc.

Mission Status: Nominal

Sol Activity Summary: Today we woke up on Mars; it is a beautiful morning and it feels like we are just meant to be here. Our first day of being on Mars is supposed to be about familiarizing with the station. Everyone moved into their rooms and we are working on our cooking skills to eat better food than ramen and noodles, so commander Grulich made a German bread and a carrot cake. The morning started with our first ever EVA preparation. After the training yesterday, the crew was already briefed on voice protocols and procedures and checklists to go on an EVA. We only had to find all the required equipment which took us more time than expected. Still, the first crew was out of the habitat just 15 min later as planned. During our afternoon EVA, we managed to go through all the checklists, so the team was out just 5 min late.

Once back in the habitat, we had warm soup and hot chocolate. Then the crew was working on the first surveys for the crew HSO Rawan and crew journalist Hemani, while the rest of the team also is working on the mission plan.

Tonight, we will have our first sports session with Jessica, our GreenHab Officer. Every day we are going to either have a sports or meditation session and every second day we have a cultural night to learn about each other’s cultures.

Look Ahead Plan: Sport Session, Science Day

Anomalies in work: None

Weather: cloudy with high NW winds 25-40km/h gusting 60km/h no precipitation or snow

Crew Physical Status: All crew in good health.

EVA:

Morning 10:15-14:00 low wind speed

Afternoon 14:05-15:14 higher wind speed

Reports to be filed:

Sol Summary

Commanders Report

Photo Report

EVA Report

Operations Report

GreenHab Report

EVA Request

Astronomy Report

Support Requested: None

Operations Report – February 2nd

Crew 221 Operations Report 2-2-2022 UPDATE 3

SOL: 0

Name of person filing report: Luis D. Monge

Non-nominal systems: Primary Generator, Hab lower deck 1 fluorescent light ballast (MDRS team in process of upgrade).

Notes on non-nominal systems:

Generator:

From what time last night: 21:00

To what time this morning: 07:00

List any additional daytime hours when the generator was run : 0

Solar— SOC % (Before generator is run at night) 79%

Diesel Reading – 25%

Station Propane Reading – 70%

Ethanol Free Gasoline – gallons

Water (loft tank): 50 gallons

Water Meter: units-

Water (static tank) – (MDRS team full refilling in progress)

Static to Loft Pump used – yes

Water in GreenHab –88.44 (MDRS team full refilling in progress)

Water in ScienceDome: 0 gallons

Toilet tank emptied: yes

Deimos rover used: no

Hours:

Beginning charge:

Ending charge:

Currently charging:

Sojourner rover used: ASSIGNED TO DIRECTOR

Hours:

Beginning charge:

Ending charge:

Currently charging: yes

Spirit rover used: yes

Hours: (before EVA) 128.7

Beginning charge: (Before EVA) 100%

Ending charge: (On return from EVA, before recharging) 85%

Currently charging: yes

Opportunity rover used: no

Hours: n/a

Beginning charge: n/a

Ending charge: n/a

Currently charging: yes

Curiosity rover used: Yes

Hours: 134,8

Beginning charge: 100%

Ending charge: 80%

Currently charging: yes

Notes on rovers:

ATV’s Used: (Honda, 300, 350.1, 350.2, 350.3)

Reason for use:

Oil Added?

ATV Fuel Used: Gals

# Hours the ATVs were Used today:

Notes on ATVs:

HabCar used and why, where?

CrewCar used and why, where?

General Notes and Comments: full Cleaning and maintenance performed

Summary of the internet: Nominal.

Summary of Suit and Radios: Suits Nominal

Summary of Hab: Main fluorescent lights in Hab lower deck are being upgraded by MDRS team. New cameras installed and connected to existing station TV.

Summary of Science Dome operations: Nominal.

Summary of Ram operations: Nominal.

Summary of any observatory issues: Nominal

Summary of Health and Safety issues: MDRS crew all healthy

This is the first ops report for Crew 221. Looking forward to a great time here!

General Notes and Comments: Cleaning and maintenance performed

Summary of the internet: Nominal.

Summary of Suit and Radios: 5 radios malfunctioning

Suits Nominal

Summary of Hab: (UPDATE) Main fluorescent lights in Hab lower deck are being upgraded by MDRS team. New stove installed. New cameras installed and connected to existing station TV. Water heater repaired and functioning.

Summary of Science Dome operations: Nominal.

Summary of Ram operations: Nominal. MDRS team began work to upgrade exterior outlets

Summary of any observatory issues: Nominal

Summary of Health and Safety issues: MDRS crew all healthy

This is the last ops report for Crew 220. Thanks for everything!

Supplemental Operations Report – February 3rd

MDRS Supplemental Operations Report 03-Feb-2020

Name of person filing report: Atila Meszaros

Reason for Report: MDRS Hab systems update

Non-nominal systems:
MDRS Generator is non-operational and still on inspection
Loft water tank connection presents a minor leak

Action taken for non-nominal systems:
Since Jan 21st, we have a 15 kW rental generator connected to our power system, meanwhile, we are working to troubleshoot the MDRS generator.
A male to male connection was bought in order to replace it in the line, but the leak it’s not in the connection, it’s in the pipe itself.

Solar— running nominally, solar throughout the day and generator
backup usually on 12 hours a night.

Diesel Reading – 25%, have refill ordered for the end of the week

Propane Reading – 70%

Ethanol Free Gasoline – 2 gallons.

Water (Outpost tank) – 250 gallons

Water (static tank) – 450 gallons

Water (GreenHab) – 130 gallons

Water (loft) – 50 gallons.

Static to Loft Pump used – yes

Water Meter: n/a

Toilet tank emptied: No

Deimos rover used: Off-campus, but on its way back to MDRS this week.

Hours:

Beginning charge:

Ending charge:

Currently charging:

Sojourner rover used: Nominal

Hours:

Beginning charge:

Ending charge:

Currently charging: Yes

Spirit rover used: Nominal

Hours:

Beginning charge:

Ending charge:

Currently charging: Yes

Opportunity rover used: Off-campus, but on its way back to MDRS this week.

Hours:

Beginning charge:

Ending charge:

Currently charging:

Curiosity rover used: Nominal.

Hours:

Beginning charge:

Ending charge:

Currently charging: Yes

Notes and action taken on rovers: Nothing to report.

ATV’s used: (Honda, 300, 350.1, 350.2, 350.3):
Honda:
Oil: OK
Battery: non-operational. Management Team tried to jump it, but the ATV won’t keep running.

300:
Currently in town and non-operational.
350-1:
Oil: OK
Fully operational during maintenance running.

350-2:
Oil: OK
Battery: non-operational
Additional safety issue with the damaged handlebars

350-3:
Oil: OK
Fully operational during maintenance running.

Reason for use: Started and checked for operations

Oil Added? No, all OK.

ATV Fuel Used: 0 Gals

# Hours the ATVs were Used: 1

Notes and action taken on ATVs: Nothing more to report

HabCar running? If used, why, where? Started and checked for operations
All systems checked and major inner cleaning by MDRS Management Team.
Transmission fluid: OK
Coolant: 2/3 – OK
Breaker fluid: Full – OK
Oil: Minimum
Power steering fluid: Full – OK
Washer fluid: replacement part to order.

CrewCar running, If used why, where? Started and checked for operations.
All systems checked and major inner cleaning by MDRS Management Team.
Transmission fluid: OK
Coolant: 3/4 – OK
Breaker fluid: Full – OK
Oil: OK
Power steering fluid: Full – OK
Washer fluid: Full – OK (Refilled)

Summary of the internet: Hab and Astronomy accounts nominal. Outpost account nominal, but low in data.

Summary of suits and radios: 5 radios malfunctioning, the main issue seems to be a battery dysfunction, however, new batteries were added and replaced 6 weeks ago for most of the radios. The problem is still on inspection.

Summary of Hab operations:

Camera’s system
All 4 cameras have been installed in the hab:
Inner cameras:
Science Dome
Green Hab
Outside cameras:
From outside the RAM observing the main porch and the station
From outside the Science Dome observing the observatory
All cameras are working perfectly, and the website is still in process. More news about this soon.

Water heater
Up and running. The propane line was secured and the system is already fully operational.

NEW Kitchen Oven
After a long long time, it has arrived. It was picked up yesterday at Salt Lake City and it was finally installed today.

RAM
The breakers and outside plugs have been finally installed, just in time for the soon arrival of the two Rovers.

Lower deck lights
In media res. The full installation will be finished by tomorrow. If the lighting is adequate and enough, the upper deck lights might be changed with this new model too.

Lower deck wall heater
Moved to the right location, connected and fully operational. A replacement propane hose was bought for the water heater system, but it wasn’t finally needed, and it was necessary for the lower deck wall heater, due to the long distance from the propane line in the new correct location

Upper deck loft water tank connection
A male-male connection for the loft tank was bought to be added to the loop, but the leak was caused by the degraded pipe. The leak’s not critical, but a new pipe will be required in the near future.

Supplies added:
2 packs of mop heads
A handle (and a spare) that was missing from a drawer from the IKEA new furniture.

Summary of Outpost operations: Intern Trailer pipelines fully installed and operational.

Summary of GreenHab operations: Crew 220 did a great job on the
GreenHab. Two small disposals containers (organic and non-organic) have been added. Most of the crops look healthy, there has been a good rate of crew’s harvest and it looks like it has been a great season for the Green Hab.

Summary of ScienceDome operations:
Additional wooden pieces for the "island" in the Science Dome have been picked up.

Summary of RAM operations:
Breaker system upgraded and outer plugs for the rovers are fully operational.
The pressurized air pump has a complete hose system already installed and working.
The oil pump has a new hose

Summary of any observatory issues: Nothing to report

Summary of health and safety issues: First Aid Kit for the EVA room seems to be missing.

Questions, concerns, supplies needed and requests: None

Mission Summary – Crew 220

Mission Summary Crew 220

MDRS & MAU “Station-to-Station” MARS MEDICS Mission

INTRODUCTION

The first Mars Academy USA and Mars Desert Research Station MAU-MDRS “Station-to-Station” Mars Medics Analog Astronaut Training Missions was successfully conducted at the Mars Desert Research Station, in Hanksville, Utah. A trans-disciplinary team of analog astronauts, medical professionals and researchers will live and work together at MAU and MDRS stations and will conduct various “station-to-station” interactivities, test novel technologies and develop countermeasures and mitigation protocols and new medical capabilities that will enable humans to survive in austere, remote, Isolated and Confinement Environments (I.C.E) in Space and help improve life on Earth.

MISSION OBJECTIVES:

  1. TEST A “STATION-TO-STATION” MODEL PARADIGM. Training professionals in the fields of space medicine, aerospace, explorers, innovators, developers, artists, academics, scientists, and researchers in analogue astronautics to support future long-duration space missions, planetary surface explorations and spin-off benefits to improve life on Earth.
  2. HUMAN READINESS LEVEL (HRL) & TECHNOLOGY READINESS LEVEL (TRL):
    Testing and development of countermeasures and mitigation strategies to address the
    myriad of human factors and behavioral challenges for crews and/or astronauts living in
    austere, extreme I.C.E. (Isolated and Confinement Environments) in Space or in remote
    regions on Earth.
  3. DEVELOP NEW PROTOCOLS & STANDARD OPERATIONAL PROCEDURES
    Improve state-of-the-art in healthcare delivery and medical access for remote, austere populations and astronauts. Create and develop new “gold standards” in Standard Operational Procedures (SOP) and protocols for I.C.E. scenarios to transform and Space Medicine, Disaster and Extreme Medicine.
  4. DEVELOPMENT “JUST-IN-TIME” MEDICAL TRAINING: developing and testing interactive, fully immersive just-in-time” tele-mentoring medically-focused training in I.C.E, integrating exponential technologies, eg, spatial computing, VRAR Training Simulations, robotics and innovative technologies.

CREW TEAM

John Hanacek MA – Crew Commander / ARMR Officer

Shawna Pandya MD – Crew Commander

Susan Ip-Jewell MD – AI / Astrowellness Officer

Johannes Svensøy MD – Executive & Crew Medical Officer

Connie Delisle PhD – Health, Safety & Operations Officer

Morgan Kainu BA – Crew Geologist / Journalist

Jasleen Josan MSc – Crew Engineer / Scientist

Matt Wise – Executive & Operations & Safety Officer

Alyx Skywalker BSc – Crew Engineer

Marufa Akhter Bhuiyan MSc – Crew Scientist

Lee Roberts MSc – Crew Geologist / Engineer

Grace Graham – MAU Training Intern

CREW NARRATIVES

Commander Shawna Pandya, MD. – Callsign “Night Owl”

The MAU 001-MDRS 220 mission rep resented the first-ever “station-to-station” mission at the Mars Desert Research Station, and I feel honored and privileged to have served as a co-Commander during this historical mission. With it came a lot of firsts and learning lessons. I appreciated the opportunity to lead my crews with “military” and “consensus” governance models, although I must admit that in truth, there is a great degree of overlap between the models. No military commander can simply order their men into the line of fire – the team must agree to do so, which in and of itself is a form of consensus. As such, I did not notice any great degree of difficulty moving between the two governance models. This was also partially helped by the fact that the MAU Station crew, which operated on a consensus model, was always relatively small (2-3 crew including the Commander), therefore, it was very easy to build a consensus. Co-commanding was also a novel experience, and I enjoyed evolving with, growing with and learning from my co-Commander. Morning and night-time briefings helped us develop a shared mental model of our daily plans, and one lesson I learned was that it is best to err on the side of repeated-briefings to ensure the build-up of a shared mental model for both crew and commanders.

With regards to mission planning, in aviation, we talk about “staying ahead of the aircraft,” and the same is probably true of missions. This mission was task-saturated in nearly all categories – medical, arts and wellness, science and logistics – and in the future, I would work with my science and Executive officers to list all our “nice to have” versus “need to have” objectives well ahead of the mission itself, prioritize accordingly, and draft a mission schedule 2 to 4 weeks ahead of time. This crew in particular was good at stepping up and cleaning, cooking and doing dishes as needed, and made my job very easy, regardless of the station. One is not always so lucky, and future Commanders may need to plan to assign these tasks.

As the mission went on, the crew learned to work as a well-oiled machine, particularly when in small groups, and it is my observation that small groups tend to be productive groups. Spending more time at each station, developing more days with station-specific programming, and observing the station-specific culture that develops would be interesting, both to see how each station develops through the course of the mission, and also to observe how different-sized groups worked together.

I particularly enjoyed teaching, demonstrating and drilling the medical protocols during this mission, and would continue to emphasize this education and its application to EVA in future missions.

As I told my crew today, I learned and grew from my interactions with each and every single one of them, and while this may be the end of one adventure, from the bonds and friendships formed here, it is merely the beginning of the next.

Commander John Hanacek, MA – Callsign “Hummer”

What is power? I have studied this question academically, and now on Mars I have experienced a new level of immediacy and directness to this question. Personal power was the deep running theme of this mission for me. I was forced by circumstance to claim my personal power and my mandate as a leader in the face of strong personalities. I came here prepared to let go of my programming and tap into the inner permission to love myself enough to let go of doubts, fears and limitations – and to fully accept the leader within myself to emerge though this experience.

Establishing power was a running theme both on an operational level as well as metaphysical. I began my commander rotation at the Mars Academy USA (MAU) station, and I felt forced to quickly become comfortable with the freezing Martian nights in the austere habitat without consistent electrical power and just some small propane heaters as we worked to establish electrical systems for the MAU station. At the same time, I was establishing my power as a commander and leader.

The two stations operated on different governance models, MAU on consensus and MDRS in a more traditional hierarchical way. This became a source of growth for me, as I found myself feeling out in the cold when interacting with the MDRS commander, having to constantly ask for briefs and finding myself being talked over and what I felt as subtle undermining in the first few days. I have come to realize that it was a gift –begging me to step into my own personal power and speak for myself. In addressing these challenges directly with my Co- Command during Sol 11-12, I felt I better understood how to manage using Command and Control without being overbearing.  My MAU station mandate was immediately more comfortable as it fit my personality – facilitating consensus and creating time and space for decisions to emerge from the crew.

The first week went by in a strange kind of fast eternity where every night was a new challenge, and emotions often ran raw as I refused to back down, and embraced being my authentic self in always vocalizing concerns and truths, even when it did prove unpopular. Before I switched stations to command MDRS, I first took a three-day trip back to San Francisco, CA, Earth to work on a business project. This was surreal to say the least. I found that the Earth looked different and yet I recognized it more clearly. I reflected on how the station-to-station scenario seemed a smaller microcosm of what goes on every day on Earth: power shifting, jostling for authority and negotiation of sovereignty.

When I returned to MDRS I found myself able to interpret the command hierarchy style of leadership and within it, to communicate with authority not domination. I felt that also shifted my relationship with the MAU Commander – we synergistically seemed to reach an equitable distribution of power, authority and sovereignty. The commander who had acted in my place changed the paradigm and brought an entirely new level of operational order and mental transparency to authentical daily plans and intentions. I enlisted her as my XO and we continued a trend of what I see as the golden age of the station-to-station mission, where clear communication, visible plans and balanced power and empathy reigned.

In all, I enjoyed my time at MDRS and MAU – even when it hurt. I feel transformed from my time on Mars, and I feel like this full crew and the stations themselves will always be in my heart. I found my power here on Mars -my ability to stand tall on shifting ground and feel safe – to give orders, to take criticism and to grow with a crew made up of very different personalities. More than the exploration of Mars, this mission was an exploration of myself and the nature of power. I feel I now have been gifted with a secret to share as my final words – within me is the entirety of the all one and also the specificity of a unique authenticity I refer to as myself. The ability to accept both the light and the dark equally yet choose which one I want to express. I accept my shadow as I shine my light. I remember that everyone is me and I am everyone, and I accept that I have preferences and specifics. The ultimate power is in choice itself, in meeting all happenings and interactions with full awareness and complete memory. What will I express as I embrace the complete unity of myself? How will I be with myself in my many faces? The choice is mine if I make it so, and that is where power truly lives.

Commander Connie Delisle, PhD. – Callsign “Coyote”

Space and time have always been a fascination. Prior to MDRS, that meant introspection and personal discovery of boundaries to set and borders to let go. In in Mars flow of time I feel it’s bigger than that – and non-random. Rather, an intricate design to clear the inner space and for all to share insights as a collective wisdom for those going back to Earth or headed for other far away planets and galaxies.  This first ever-Station-to-Station mission has answered some questions but ultimately more so challenged my theories and conviction. It was a completely unexpected honor to serve as MDRS Commander for Sol 8-11, leading me to affirm that even on Mars my true calling is of service and support to leadership. As Commander, the following three insights are offered: First, self-monitoring and day-to-day crew checks for wellness, adjustments to operational tempo and re-alignment with Mission Objectives requires extreme and ongoing vigilance. Second, Mars is a team sport. I found that delegation and follow up worked equally well on Mars and it does on Earth; the main difference is in the cycle times being very short. Third, crew diversity and culture are powerful. In seeing and feeling through other’s perspective, then patience and understanding transformed hurt to healing.  On a personal note, it was entirely freeing that Crewmate and Astrological Researcher Marufa Akhter Bhuiyan validated for me, the realness of living in imaginary time- something I’ve been doing on Earth without knowing what it meant. Even though current time was short as MDRS Commander, teachings and reflections from MAU and MDRS Crew along with MDRS Director and her team will live on through time immortal.

Morgan Kainu – Callsign “Grass Snake”

This mission was a complete success with respect to teamwork and spiritual growth together and has paved the path for future endeavors together. I would be happy to do a future mission or research with any one of the crew in the future.

Matt Wise – Callsign “Fox”

This was a unique opportunity to practice innovation and group problem-solving in an isolated environment.

Johannes Nordsteien Svensøy  M.D., M.Sc.EMDM -Callsign “Raven”

This was an opportunity to solve real-life challenges in a simulation, which is critical if you are going to push the boundaries in austere environments and extreme medicine.

Project Reports

Johannes Svensøy MD callsign “Raven”

Butterfly iQ Ultrasound tele-guidance, Butterfly Network.

The Butterfly iQ was brought onboard the current mission with much appreciated help and guidance from the Butterfly Network. The Butterfly iQ is a revolutionary handheld Ultrasound System integrating the most commonly used probes in medical ultrasound imaging into only one probe. The device is operated from small-screen devices such as mobile phones or tablets, making this the perfect tool for ICE (Isolated, Confined and Extreme) environments such as this MAU-MDRS Mission. The Butterfly was integrated into teaching and training of both medical and non-medical personnel, particularly into trauma scenarios in the field. The objectives of the training were device familiarization, and to get a hands-on idea of POCUS (point-of-care ultrasound) and FAST (Fast Assessment for Sonography for Trauma) protocols. The Butterfly Ultrasound was also used during simulation for assessment of an injured astronaut after evacuation and decompression into the station. The Butterfly Ultrasound and the program is easy to operate, and with the tele-guidance tool, a medical expert can guide, analyze, and explain the findings to the operator. This project was met with an overwhelmingly positive response from both medically and non-medically trained personnel, and all were able to appreciate its use case for future missions and simulations. My recommendation is to further integrate the Butterfly and its multiple capabilities into more simulations in future missions. Appreciation and thanks to Butterfly Network for the possibility to test this tool in austere environments such as here on Mars.

John Hanacek MA

Virtual Reality and Spatial Computing Demos

Objectives: Give the crew access to cutting edge Virtual Reality (VR) and Spatial Computing/ Mixed Reality headset technologies.

What was done: Brought an Oculus Quest VR headset and a Magic Leap Spatial Computing headset, both loaded with applications.

Did not achieve objectives, only one member of the crew experienced just one device.

Needed to schedule dedicated time for the activity, yet this mission had so many activities that it often got bumped due to other projects taking immediate precedence as being more mission relevant.

Future plans are to once again bring the devices, yet firmly establish a time window of at least an hour to demonstrate them. Next time I will need to get into the schedule much earlier and stay persistent that it is mission relevant to have the crew experience these next generation technologies.

AvatarMEDIC HoloTRIAGE ™ Application Testing

Objectives: Conduct user testing on the newly developed prototype HoloTRIAGE mobile phone AR application for multi victim trauma scenario training. Develop survey for said testing.

What was done: Brought application loaded on a mobile phone, had any interested participants sign MNDA with AvatarMEDIC company

Achieve Objectives? Partially. Did not find time to conduct any tests but we develop a survey which can be used for subsequent tests.

Why not achieve? Application was only completed within the last four Sols of the Mission, not leaving adequate time to slot in a testing time period into the already crowded schedule.

Future plans are to test the application on Earth and further refine the application and the survey methods. Additionally, utilizing the training from this MDRS/MAU mission to inform additional curriculum modules for the application and enhance the quality of the training.

Susan Ip-Jewell MD. Callsign “Chinthe”

Teleanesthesia “Vapojet” Simulation Training

For pre-simulation training, telepresence was proposed to train the crew members in basics surgical interventions such as Debridement and Suturing using simulation tissues. During the sim, the crew learnt and conducted the teleanesthesia protocols using the 3D Printed VAPOJET TM

Mars Governance Models

Designing future strategies for implementing a form of governance model in isolated and remote groups to include ethics, rules and regulations. What infrastructure model is needed to ensure optimum health, wellbeing, increase productivity and collaboration for crews.

The implementation of two different governance models for each station was an interesting experiment for the crew teams. The MAU station adopted the consensus model and MDRS station adopted the “military hierarchical” model. Both crew teams experienced the two models with positive outcomes and was able to live and work together and quickly adapting to the station environments and the limitations and restrictions imposed during the mission.

FOLDABLE MICROSCOPE PROJECT:   

Paper foldable microscope was assembled by crew and used to detect microorganisms and potential bacteria and contamination in the soil samples collected during the geological EVAs.

Meals for Mars Project – PI: Sian Proctor PhD

The Elements  meals used freeze-dried “meals”  specifically designed for long duration spaceflight missions for astronauts and crews in austere I.C.E was implemented in the mission for several days with selected crew participants.

Matt Wise Callsign “Fox”

Station to Station Data Link

Objective- Create a wireless data link between MDRS habitat and MAU station

We emplaced mesh network access points between MAU and MDRS to create a station to station localized network for sharing files and operational data.  Lack of solar panels and batteries forced us to run power cables to each access point, however the data was relayed very effectively via wireless signal.

Result- The concept was proven, but full point to point connectivity failed due to insufficient access points to span the distance between stations.

Future- In the future having more access points for the mesh network will alleviate connectivity gaps.  I’ve designed a one-piece wireless repeater which solves this issue.  Teams will be able to deploy a modular mesh network to effectively expand station connectivity

Mars’-bucha Bacterial Production Study

Digestive health and, more specifically, the gut bacteria biome are critical considerations for long-term habitation off world.  Complex solutions requiring resource intensive production will be less than optimal from both a transport and operation standpoint.  Kombucha can be easily produced and requires only tea, sugar, and water.  The bacterial culture is extremely resilient and not only reusable but self-replicating after only 7-14 days in ideal conditions.  Producing such a beverage is both healthy and has a positive effect on morale.  While a number of sugar sources are available this study assumes sugar cane grown in the greenhab as well as various types of tea which will also provide excellent oxygen production and a good cellulose fiber source for production of other materials.  The bacterial culture can be easily transported from earth or carefully isolated in the hab.

In our study we began with a 3 gram sample of isolated bacteria, mixed with 1 gallon of brewed tea and sugar, and allowed to propagate in a warm, dark container.  After 8 days the bacteria colony had formed a thin layer in the liquid.  These bacteria consumed most of the sugar and caffeine in the liquid and reproduced large quantities of beneficial bacteria.  75% of the liquid was drained from the container, bottled, and mixed with approximately 2oz of sweetened fruit, tea, and/or spices depending on the taste of each crewmember.  After 3 days of second fermentation the carbon dioxide expelled by the bacteria consuming sugar gave the beverage a slight carbonated kick and the color had changed to deep reds and golds depending on the ingredients added.  They were also delicious!  The remaining liquid was enriched with sugar and left to sustain the bacteria colony until we’re ready to produce the next batch of Kombucha.  As of this writing a second bacterial layer has formed from the original colony.  This layer could be separated and used to begin an entirely new container of Kombucha.

The health benefits of Kombucha are far reaching, as is the simple enjoyment of a tasty beverage.  Additionally, the fermentation process produces CO2 which would be beneficial to plants growing in the green hab. The greenhab, in turn, is a warm environment, a perfect location from producing Kombucha.  Production is non-resource intensive and the yield is high. This is a perfect option for a Mars habitat.

GOLDEN BUBBLE

Objective- Use the Golden Bubble medevac device in an analog Martian environment and successfully deploy, load, and transport a mock-casualty to higher medical care.

The Golden Bubble is a pressurized emergency medevac device comprised of a backboard, inflatable transparent membrane, and life-support systems. The Golden Bubble is designed to be used in emergencies to provide a pressurized, clean-air environment during a medical emergency.  The casualty is strapped onto the backboard and then the membrane is inflated around them creating a protective bubble.  Access points along each side allow first responders to assess and stabilize the victim without exposing them to toxic or low-pressure, low-oxygen environments.  The inside pressure is regulated to a specific atmosphere and excess C02, fumes, dust, and other contaminates are vented to the outside.  The purpose of this device is to extend the Golden Hour and give first responders more time to move a casualty to higher care.

In this case we used the Golden Bubble as a medical scenario training aid.  A mannequin was used as a mock-casualty and was subsequently put inside the Golden Bubble, assessed for injuries, and transported by foot, then by rover, to the nearest airlock for higher medical care.

Result- The test was highly successful, and the Golden Bubble performed better than expected in many ways.  It was relatively easy for any individual crewmember to carry and deploy.  A longer version will, however, need to be constructed for patients taller than 72” and improved air tank capacity will be necessary for a production version.

Future Plans- Going forward I will continue to improve the functionality and ergonomics (particularly for patients wearing EVA suits) of this design and create a more streamlined and functional production version.

Shawna Pandya MD. Callsign “Night Owl”

ISANSYS Sensors

The ISANSYS Lifetouch 20g sensors, blood pressure cuff and pulse oximeter were deployed on this machine to see how they would fare in an ICE environment. The sensors are capable of measuring heart rate, respiration rate, heart rate variability, one-lead EKG and accelerometry. When paired with the other two devices via Bluetooth, the system is capable of measuring blood pressure and pulse oximetry as well. In this mission, 4 patches were deployed on 4 crew members (2 male, 2 female), as a test of both longevity over a 2 week mission, and as a test of hardiness, as all 4 crew members spent one week at the MDRS Hab, and one week in the MAU Station, in tents in a winter desert environment. The Lifetouch Patches have been previously deployed in parajumper and military field exercises, the Cleveland Clinic, in Antarctica with the NASA Johnson Space Center Exploration Medical Capability team in drysuits, underwater in wetsuits, and in parabolic flight. In this demonstration, the patches were both used to collect biometrics, as well as make notes of how the patches reacted when used continuously over a two-week mission, with intermittent battery replacement as needed, as well as with continuous exposure in the cold desert environment. Subjectively it seemed that sensor battery life diminished in the tent environment. There were some issues with QR code reading, initially with pairing the blood pressure cuff to the ISANSYS tablet, and later on with the pairing of the tablet to the LifeTouch patches. These eventually resolved, but from previous experience, it seemed like the patches required a new session to be started every time a session was transferred, rather than transferring back to a previous user. Of note, the tablet’s ability to read QR codes seemed to behave better once the tablet was connected to the Internet. By the end of the mission, most batteries had failed, and sessions were either intentionally ended after catching up on all data, or ended prematurely with batteries dying, resulting in the loss of some data. Early on in the mission, the ISANSYS/Stark team confirmed that they were able to view uploaded data on the secure server. This ultimately represented a successful demonstration of the Lifetouch system in an extreme environment. In the future, to minimize data loss, it may make sense to schedule “maintenance” Bluetooth catch-up sessions at 3-4 day intervals. With future deployments of the Lifetouch Patch, it may be interesting to have the subjects keep a journal of particularly notable physical, physiological or emotionally events, and later correlate those events to sensor readings. As a final point, the timestamp on the table is 2 hours ahead, and this was not corrected so as to not interfere with the tablet settings.

EVA Biometrics Study

The EVA biometrics study looked at crew wellness parameters pre and post-EVA. Parameters measured include blood pressure, heart rate, pulse oximetry, weight, and questions assessing hydration status and subjective notes pre-EVA, and questions regarding subjective assessment of physical exertion, mental exertion and emotional distress. The study succeeded in acquiring some data points, but there is room for improvement as to how the study is conducted in the future. Firstly, the vital sign measuring equipment was only available at MDRS station, hence only EVA teams leaving from MDRS station could be consistently assessed. In addition, given the large size of the crew, the number of times a single individual was assessed was limited, usually ranging between 0 to 3 times over the course of the entire mission. Lastly, there were moments, when, either due to time constraints or simply forgetting, that pre or both pre- and post- data point collection was missed, limiting the value of the results. Future studies would do well to regularly collect pre- and post- EVA data. From the data points collected, however, most crew members seemed well-hydrated pre-EVA, no crew members lost weight from dehydration based on the data, and no vital signs were grossly abnormal.

Psychological Resilience in ICE Environments Study

The psychological resilience in ICE environments study was conducted in partnership with Dr. Nathan Smith of the University of Manchester, and this study was initiated in partnership with NASA as an evaluation of psychological resilience of astronauts, and later expanded to adults on expeditions of >10 days in other expedition and isolated and confinement environments. The study consists of both pre and post-mission surveys, as well as twice daily mission diaries. There were difficulties with obtaining data due to the initial state of emergency at the start of the mission, and accessing the digital surveys, which put those partaking in data behind from the outset. In addition, the study data may be affected by the highly dynamic nature of crew members moving in and out of “quarantine,” affecting the data. Ultimately, because of the limited internet, nearly all surveys were completed in retrospect, also possibly affecting the data. These notations will be made when the final data is sent back to the primary investigator. If incorporating this study into future missions, it would make sense both print paper copies ahead of time, so as not to be hindered by technology lapses, and also to schedule time pre, post and in-mission to ensure that data is captured daily.

MAU Ambassadors Program

The MAU Ambassadors Program was started during the second week of the MAU Command under Commander Pandya, with one Officer from MDRS coming to spend a night and part of the next day with the MAU crew to foster cross-station professional competencies, relationships and cultural exchanges. During its initial run, 3 MDRS officers, including the MDRS Journalist, Engineer and GreenHab Officer spent one night each at the MAU station, and all expressed positive sentiments about their stay, commenting on either the view from MAU station, the time spent with the MAU crew and/or discussing mission logistics. All in all, this initial trial run of the program was promising, and may be worth incorporating into future missions.

ABOUT MARS ACADEMY USA (MAU)

Mars Academy USA (MAU) is the 21st Century Academy “offering experiential learning with exponential technologies”. MAU is creating a new paradigm in learning using exponential technologies, simulation-based learning, and edutainment. MAU is an organization with a mission to train the Next-Gen Analog Astronauts, Visionaries, Innovators, Scientists, Explorers, and Astroprenuers. Since 2016, MAU has been developing, testing, and implementing a “Portable Integrated Turn-key Analog Astronautics Simulation Training SystemTM” and creating a unique “Let’s get S.T.E.A.M.E.D”TM (Science, Technologies, Engineering, Art, Maths, Exponential, Digital VRAR) workshops and programs focusing on exponential technologies, such as, teleanesthesia-telesurgery, VRAR, solar powered 3D Printing, HoloTRIAGE, and Gamification. The company offers their unique “space-focused edutainment” programs to academia, commercial and corporate markets, and general public. The mission of the organization is to Educate, Empower, Entertain, Engage, and Expand an international, global “voice” in support of human space explorations, technological innovations to enable future settlement on off-world planets, Mars or Moon, with focus in spin-off benefits for improving life on Earth. MAU unique portable basecamp comprised of various size “pods” with connecting tunnels which allows for multiple configuration design to adapt and suit the surrounding environments and number of crew participants. The basecamp can be easily assembled and disassembled for quick removal after the mission. www.marsacademyusa.com

ABOUT MARS MEDICS MISSION (MMM)

Mars Academy USA (MAU) is a series of Analog Astronaut Simulation Training missions focusing on space medicine, biomedical and biotechnology innovations. Mission crews enter fully “in-person” immersive simulations living and working together in a transdisciplinary, multicultural analog Mars environment in MAU’s mobile, modular Mars Basecamps. The missions are specifically focused on innovations for explorations in space medicine, astro-wellness, space food production and nutrition. The crews will test, develop and innovate ways to support future human explorations and settlement on Mars and Moon. The crews will test design and integrate exponential technologies, such as, VRAR, 3D printing, and even genetic tools.