Mission Plan – May 6th

[title Mission Plan – May 6th]

[category mission-plan]

Mission plan MDRS Crew 212 6th May- 18 th May

LATAM III is a Latin American and European venture that has three objectives Science, Outreach and collaboration. Our crew consists of 7 crew members from 6 member states that will be performing 9 experiments these range from biological, engineering and astrophotography. In this brief report, we will explain our goals and how we will achieve them in two weeks.

1. Crew Description

1) Camila Marlen Castillo – Crew Commander

2) Vittorio Netti- Crew XO/HSO

3) Mariona Badenas-Agusti- Crew Astronomer

4) Camilo Zorro- Spacesuit Engineer

5) Héctor Palomeque – GreenHab Officer

6) Paolo Guardabasso- Crew Engineer

7) Zoe Townsend- Crew Journalist

2. Goals

We are representing a range of cultures from around the globe. We hope that in these two weeks we will work collaboratively to produce high quality scientific experiments and make life-long friends. Whilst undertaking out experiments we have also planned a variety of activities in the evenings that would help to develop this close friendship, these include a cultural night; where each of us will present national dishes and games from out countries. We plan to undertake this early on in the SIM as an ice breaker event. Other plans we have, includes celebrating the birthday of one of our crew members and also making sure that each day we have meals together

3. Experiments:

Solar observation/astrophotography/Stellar clusters

The Martian atmosphere is very thin in comparison to that of the Earth, so astronomical observations from Mars will be less affected by undesirable atmospheric effects like seeing and absorption. Given the remote location of the MDRS, which results in little light pollution near the MDRS Observatory, this Mars analog site offers a fantastic opportunity to conduct observations of the sky. Over the course of two weeks, we will use the MDRS-14 Robotic telescope (Celestron 14’’ Edge HD, 355.6 mm aperture, 3910 mm focal length, f/11 focal ratio) to generate colour-magnitude diagrams of selected open clusters and look for potential asteroids or other minor bodies; employ the MDRS-WF astrophotography instrument (StellarVue70, 70mm aperture, 336mm focal length, and f/4.8 focal ratio) to generate images of deep-sky objects; and utilize the MDRS Musk solar telescope to investigate the solar chromosphere through a Hydrogen-alpha filter.


The X-5 Drone is an experimental concept for an autonomous aerial platform designed to complement the initial human crews on the Martian surface. The X-5 is powered by lightweight’s flexible double-junction solar panels, which assure a dawn-sunset flight autonomy. Thanks to its VTOL capabilities, the Drone can autonomously take off and reach the mission objectives without the need for direct control from the crew. The X-5 Payload is composed by 2 cameras (one fixed global-shutter camera and one for navigation) and a huge range of sensors. The camera can be switched for more mission-specific payloads such as multispectral sensors or thermal vision devices. The operational scenarios covered by the X-5 are photogrammetry mapping, surface composition analysis, and search & rescue missions.


In recent years, the possibility of using aerial vehicles on Mars has drawn the attention of engineers and scientists: drones have the potential to revolution planetary exploration, as they can travel higher and faster than rovers can but still allow high-resolution sensing. The main aim of the VESTA experiment (from the Roman goddess protector of the household) is to evaluate possible uses for drones in the proximity of the MDRS, in terms of operational complexity and utility of such an instrument, with regard to safety and crew time and necessary training. Two different scenarios will be evaluated: weather monitoring and settlement inspection.

Observation Rover

The next step in Space Exploration is the settlement on new bodies. In the future, the settlements reliance on Earth should be kept minimal relying on the compounds found naturally; in many cases, this can mean digging or mining this material. This project is the creation of a sample drilling station that can work in situ and with the integration of a rover. The rover will travel autonomously to areas of interest and deploy the drilling station. Data such as penetration depth, and speed, soil hardness and duration of mission will be recorded for analysis of the topology in the region. The project is a collaboration with the University West of England in Bristol and help from Catapult Satellite

Space Farming

Growing crops on the Mars surface will be necessary for its terraforming and human settlement. Despite Martian regolith seeming to have all the nutrients for plants development, unfortunately many of these nutrients are in low assimilable form. For that reason, bacteria interactions with regolith components will be an alternative for promoting nutrients uptake and plant nutrition, but microorganisms selected for this task need to survive against Mars environmental conditions. Regarding this scenario, extremophiles could play a key role due to their survival and adaption mechanisms under hazardous environmental conditions. This project, focuses on the application of Plant Growth-Promoting Bacteria (PGPB); isolated from extreme environments, over lettuce to study the effect of biofertilization into a soil similar to Martian regolith. We expect to have better production yields on lettuce growth parameters when it is inoculated with PGPB.

Keep talking

Physical confinement and isolation during long missions to Mars will influence even the best trained crew members. Space psychology is constantly investigating group interactions, with the aim of finding new methods for crew selection and training. For this human factors experiment, the members of Crew 212 will play a cooperation game each day, in order to observe and document the team’s problem-solving capabilities.

Ethnography study

The current work has an aim to carry out an ethnography observance in situ during our MDRS rotation. As an initial concept, ethnography is a research method that allows to dig out qualitative data about the behaviour of subjects and social groups. It can be analysed in the light of sociological and anthropological categories. It will let assess the isolation and confinement conditions and how they affect the group dynamics, with that to establish hypotheses about how this could affect the social web of a crew in a real mission.

Pulse oximeter measurement

Pulse oximeter measures will help to evaluate the functionality of sim suits through measures of pulse and SpO2 % in one of the crew members with different routines.

Software for macroscopic characterization

When isolating bacteria from soil, researchers describe macroscopic characteristics first. This helps to classify bacteria according to the size, shape, border and elevation of the colonies they produce. The aim of this project is to develop a software with image recognition capabilities that can help to classify bacteria according to their macroscopic characteristics. By the end of this project, the software will be able to produce a report with the amount of bacteria present on a plate and a clear classification of their morphology.

4. Other projects

In addition to our projects, various members of Crew 212 have and will be undertaking various interviews and science communication outreach. A selection of interviews include: Venezia nuova: la Repubblica, Mars Planet website blog, STEMinist vlog, ARA Catalonia and Recerca en Accio. Also, the LATAM III mission has been selected as a vendor at the science dome for WOMAD festival. In addition, two of our crew members were selected to participate at AMADEE20 in which they will also partake in the science workshop of AMADEE20 where they will be presenting their drones and talking about the performance at MDRS.


MDRS Tripulación 212 6 Mayo – 18 Mayo

LATAM III es un equipo latinoamericano y europeo que tiene tres objetivos: Ciencia, divulgación y colaboración. Nuestra tripulación consiste de 7 miembros de 6 estados miembros que estarán realizando experimentos en campos tan diversos como la biología, la ingeniería y la astrofotografía. En este reporte, explicaremos nuestros objetivos y como los alcanzaremos en dos semanas.

1. Descripción de la tripulación

1) Camila Marlen Castillo – Comandante de tripulación

2) Vittorio Netti- Oficial ejecutivo / Oficial de salud y seguridad

3) Mariona Badenas-Agusti- Astrónoma de tripulación

4) Camilo Zorro- Ingeniero de trajes espaciales

5) Héctor Palomeque – Oficial de GreenHab

6) Paolo Guardabasso- Ingeniero de tripulación

7) Zoe Townsend- Periodista de tripulación

2. Objetivos

Representamos una variedad de culturas alrededor del globo. Esperamos que estas dos semanas sean de trabajo colaborativo para producir experimentos de alta calidad científica, y estrechar lazos de amistad para toda la vida. Además de realizar nuestros experimentos, también planeamos una variedad de actividades en las noches que nos puedan ayudar a desarrollar una amistad cercana. Esto incluye noches culturales, dónde presentamos platos nacionales y juegos de nuestros países. Planeamos realizar esto al inicio de la simulación, como evento para romper el hielo. Otros planes incluyen celebrar cumpleaños y tener comidas juntos.

3. Experimentos:

Observación solar/astrofotografía/Cúmulo de estrellas

La atmósfera marciana es muy delgada en comparación a la de la tierra, así que las observaciones astronómicas desde Marte serán menos afectadas por efectos atmosféricos innecesarios. Dada la locación remota de MDRS, que resulta en poca polución de luz cerca al observatorio MDRS, este análogo marciano ofrece una fantástica oportunidad para realizar observaciones del cielo. Durante las siguientes dos semanas, usaremos el telescopio robótico MDRS-14 (Celestron 14 Edge HD, 355.6 mm aperture, 3910 mm focal length, f/11 focal ratio) para generar diagramas color-magnitud de cúmulos abiertos seleccionados y mirar potenciales asteroides u otros cuerpos menores. Además emplearemos el instrumentos de astrofotografía (MDRS-WF) (StellarVue70, 70mm aperture, 336mm focal length, and f/4.8 focal ratio) para generar imágenes de objetos de cielo profundo, además de utilizar el telescopio solar MDRS Musk para investigar la cromósfera solar a través del filtro alfahidrógeno.


El dron X-5 es un concepto experimental para una plataforma aérea autónoma diseñado para complementar a las primeras tripulaciones humanas en la superficie marciana. El X-5 está equipado por paneles solares ligeros, flexibles y unidos, que aseguran una autonomía de vuelo dawn-sunset. Gracias a las capacidades del VTOL, el dron puede despegar autónomamente y realizar objetivos de misión sin necesidad de control directo de la tripulación. El X-5 está complementado por 2 cámaras y un gran rango de sensores. La cámara puede ser cambiada por otros complementos de misión, como sensores multiespectrales o implementos de visión termal. Los escenarios operativos cubiertos por el X-5 son el mapeo fotogramétrico, el análisis de composición de superficie y misiones de búsqueda y rescate.


En años recientes, la posibilidad de usar vehículos aéreos en Marte ha atraído la atención de ingenieros y científicos: Los drones tienen el potencial de revolucionar la exploración planetaria, ya que pueden viajar más alto y rápido que los rovers, pero permiten, igualmente, una sensibilidad de alta-resolución. El principal objetivo del experimento VESTA (de la diosa romana protectora del hogar) es evaluar la posibilidad de usar drones en la proximidad de MDRS, en términos de complejidad operacional y utilidad de dicho instrumento, considerando la seguridad y el tiempo necesario de la tripulación. Dos escenarios distintos serán evaluados: Monitoreo del clima e inspección de asentamiento.

Rover de observación

El siguiente paso en la exploración espacial es el asentamiento de nuevos planetas. En el futuro, la dependencia de estos asentamientos en la tierra debería de ser mantenida al mínimo, utilizando, en cambio, los compuestos hallados naturalmente en el nuevo hábitat. En muchos casos, esto puede significar excavar o extraer este material. Este proyecto trata de la creación de una estación taladradora de muestras que puede trabajar in situ y con la integración de un rover. El rover puede viajar autónomamente a áreas de interés y aplicar la estación de taladro. Datos como la profundidad de la penetración, la velocidad, la dureza del suelo y la duración de la misión serán grabados para el análisis topológico de la región. El proyecto es una colaboracion con la University West of England in Bristol y la ayuda de Catapult Satellite Applications.

Agricultura espacial

El crecimiento de cultivos en la superficie marciana será necesario para su terraformación y el asentamiento humano. A pesar de que el regolito marciano parece tener todos los nutrientes para el desarrollo de plantas, lamentablemente, muchos de estos nutrientes están en forma poco asimilable. Por esa razón, las interacciones de bacterias con los componentes del regolito pueden ser una alternativa para promover la absorción de nutrientes y la nutrición de plantas. Pero los microorganismos seleccionados para este rol deben de sobrevivir a pesar de las condiciones ambientales de Marte. Viendo este escenario, los extremófilos pueden jugar un papel importante gracias a su supervivencia y mecanismos de adaptación en duras condiciones ambientales. Este proyecto se enfoca en la aplicación de bacterias promotoras del crecimiento de plantas (PGPB por sus siglas en inglés) aisladas de ambientes extremos en lechuga para estudiar los efectos de la biofertilización en suelo similar al regolito marciano. Esperamos tener una mejor producción de los parámetros de crecimiento de la lechuga cuando es inoculada con PGPB.

Keep talking

La confinación física y el aislamiento durante misiones largas a Marte influirán incluso en las tripulaciones mejor entrenadas. La psicología espacial está investigando constantemente interacciones de grupo, con el objetivo de encontrar nuevos métodos para la elección de una tripulación y su entrenamiento. Para este experimento de factor humano, los miembros de la tripulación 212 jugarán un juego competitivo cada día, para así observar y documentar las capacidades de resolución de problemas de los equipos.

Estudio etnográfico

El presente trabajo busca realizar una observación etnográfica in situ durante la rotación en MDRS. Como concepto inicial, la etnografía es un método de investigación que permite obtener data de calidad acerca del comportamiento de sujetos y grupos sociales. Puede ser analizada bajo las categorías sociológicas y antropológicas. Permitirá evaluar las condiciones de aislamiento y confinamiento y como afectan las dinámicas de grupo, y con esto establecer hipótesis acerca de cómo esto puede afectar las interacciones sociales de una tripulación en una misión real.

Medición de pulso y oximetría

Las mediciones de pulso y oximetría permitirán evaluar la funcionalidad de los trajes de simulación a través de medidas de pulso y SpO2 % en uno de los miembros de tripulación con distintas rutinas.

Software para la caracterización macroscópica

Al aislar bacterias del suelo, los investigadores suelen utilizar primero la descripción de características macroscópicas. Esto ayuda en la clasificación de bacterias de acuerdo con su tamaño, forma, borde y elevación de las colonias que produces. El objetivo de este proyecto es desarrollar un software para el reconocimiento de imágenes con capacidad de ayudar en la clasificación de acuerdo con características macroscópicas. Al término de este proyecto, el software debe de ser capaz de producir un reporte de la cantidad de bacterias presentes en un cultivo en placa petri y hacer una clara clasificación de la morfología.

4. Otros proyectos

En adición a nuestros proyectos, varios miembros de la Tripulación 212 tienen y participarán en varios trabajos de divulgación, como entrevistas y divulgación científica. Una selección de entrevistas incluye: Venezia nuova: La Repubblica, el blog Mars Planet, el vlog STEMinist, ARA Catalonia, N+1 y Recerca en Accio. Además, la misión LATAM III ha sido seleccionada para el domo científico del festival WOMAD. Además, dos de nuestros miembros de tripulación han sido seleccionados para participar en AMADEE20 en donde además participarán del taller científico de AMADEE2′, donde presentarán sus drones y su performance en MDRS.

Mission Plan – April 1st

Crew 208 Medical Makers Mission Plan
Commander: Julielynn Wong
Executive Officer: Dean Jin
Health & Safety Officer: David Kim
Engineer & Astronomer: Amanda Manget
Greenhab Officer & Journalist: Erika Rydberg

Medical Makers is a global community of innovators, patients, and healthcare providers who use low-cost technologies to make sustainable solutions to save lives, time, and money. Medical Makers host Medical Make-A-Thons worldwide to crowdsource low-cost, high-quality, life-changing 3D printable solutions for 3D4MD’s digital library. Our MDRS projects include:

• 3D printing drone maps of MDRS and the surrounding Mars-like terrain
• Evaluating a new drone controller during flight tests, including an outdoor inspection of a Martian habitat during a simulated emergency
• Evaluating a low-cost, high-fidelity, 3D printed thoracentesis trainer designed to allow Crew Medical Officers, their back-ups, and healthcare professionals to attain and maintain life-saving surgical skills to serve astronauts on long space missions and the 5 billion people who lack access to safe, timely, and affordable surgical care
• Demonstrating the technical feasibility of bike-powered 3D printing by Martian analogue astronauts — who are following the International Space Station exercise bike schedule — to empower the 1 billion people without access to electricity to use portable 3D printing technologies
• Testing a wearable sensor that monitors wear time for 3D printed prosthetic hands to reduce the risk of complications
• 3D printing essential items on demand locally to save lives, time and money for the 3.75 billion people who live in remote or rural areas, the 136 million people who require humanitarian aid, and astronauts on long space missions
• 3D printing low-cost, high-quality medical devices for healthcare providers who serve the 3.75 billion people who live in remote or rural areas and astronauts on long space missions
• Testing a reusable and simple 3D printable ostomy system for stoma patients who cannot afford disposable ostomy appliances, a growing global industry that costs healthcare systems $2.5 billion a year
• Using reusable, personalized, biodegradable 3D printed straws to conserve water at MDRS and reduce the amount of plastic waste in landfills and oceans

Crew 208 Medical Makers is grateful for the financial support of Dr. Robert Milkovich and Mrs. Marijana Milkovich, Ron Rivkind at Filaments.ca, and Schulich Leader Scholarships, Canada’s most coveted undergraduate STEM scholarships. Our MDRS projects are also made possible thanks to Atila Meszaros, David Mateus, and Shannon Rupert at the Mars Desert Research Station, Dr. Scott Parazynski and George Guerrero at Fluidity Technologies Inc., Jade Bilkey, Crew 207 Medical Makers, and members of the Medical Makers YGK, YHM, YKF, YMM, YVR, YYT and YYZ Chapters.

Crew 208 Medical Makers Mission Plan.pdf

Crew 202 Mission Plan – December 30th

Mars Desert Research Station
Mission Plan

Crew 202 – MartianMakers
Dec 28th, 2018 – Jan 12th, 2019

Crew Members:
Commander and Crew Astronomer: Dr. Cesare Guariniello
Executive Officer: Denys Bulikhov
Crew Engineer: Kasey Hilton
Health and Safety Officer and GreenHab Officer: Jake Qiu
Crew Geologist: Ellen Czaplinski
Crew Journalist: Alexandra Dukes

Mission Plan:
MartianMakers is the second all-Purdue crew at MDRS. Enthusiast and grateful for the first experience of Purdue students and alumni at the station, and eager to bring our tiny contribution to the advancement of research for human exploration of Mars, we organized a crew with one veteran of MDRS and five bright young rookies.
Crew 202 will perform various research tasks related to human exploration of Mars: some of them will be performed in the laboratory, while others require Extra Vehicular Activities (EVA), thus adding realistic difficulties to the task. This way, crew members will not only be collecting data for their research projects, but also identifying potential issues and difficulties with performing tasks while encumbered by space suits in a harsh environment. A third important aspect of the mission will be the experience of living together in a small habitat, with all the consequent psychological and social aspects that will allow the crew to challenge themselves in a realistic astronaut situation.

The main objectives of the MartianMakers analog Martian mission are:
• Keeping the highest level of fidelity and realism in the simulation. Earth analogs cannot reproduce Martian gravity and atmosphere, but the crew will keep every other aspect into consideration. This includes safety and research protocols, definition of roles and daily schedule (with ample space for personal time), EVA protocols and difficulties, communication protocols, fruitful collaboration with the program director and mission support, and adaptation to limited resources and environmental difficulties.
• Perform research in the fields of earth sciences, biology, psychology, and crew operations on Mars
• Complete outreach projects. Public relations and outreach began before the mission and will continue after it and includes outreach to the general public about analog missions and their importance, outreach to students about the crew research, and media release through Purdue university and other channels.
• Lay the foundation of continued collaboration of Purdue crews with the MDRS program.
• Following the mission, supporting MDRS with useful products and manuals for future crews.

Crew Projects:

Title: Fuzzy Logic Decision Making in support of autonomy for crew EVAs
Author(s): Cesare Guariniello
Objectives: Comparison of decisions made by crew during EVAs with decisions based on a fuzzy-logic intelligent machine
Description: Prior to the mission, a simple decision-making machine based on fuzzy logic considerations has been built. When events (loss of communication, unexpected environmental difficulties, crew member injury) occur, the algorithm decides whether to continue the EVA, modify the primary objective, proceed to secondary objective, or abort the excursion based on safety of the crew, current status of the mission, achieved partial goals, and potential further acquisition of data. During the mission, events will be suggested to the crew (not simulated, for reasons of safety. It will be up to the astronauts to keep their decisions realistic), and the discussion and decision recorded and compared to that suggested by the machine
Rationale: Due to the distance between Earth and Mars, increased autonomy of the crews is fundamental. Support from Earth will be limited and time-delayed, therefore astronauts on Mars will need to be able to perform decisions autonomously. Intelligent and adaptive algorithms can provide a key support to astronauts, especially in situation of distress
EVAs: 3-4 medium to long EVAs

Title: Stress levels and decision making during Extravehicular Activity (EVA)
Author(s): Denys Bulikhov
Objectives: Assess how stress experienced during simulated Extravehicular Activity (EVA) affects decision making of an astronaut
Description: Extravehicular activity is an extremely demanding task, physically and psychologically. EVA exposes astronauts to significant physiological stress. Multiple studies have shown that human decision making is strongly influenced by stress. It has been demonstrated that stress changes participant’s attitude towards risk which in case of EVA may lead to dangerous consequences. This particular study is designed to investigate the possible influence of physiological stress experienced by participants during simulated planetary EVA on their decision-making. Different conditions of stress will be simulated (no EVA, regular EVA, some level of stress after EVA). The amount of stress will be evaluated through a procedure approved by Purdue’s Institutional Review Board, involving collection of saliva and appropriate measurements.
Rationale: Astronauts perform tasks in hazardous environment, and they need to be able to make safe decisions. It is important to know how stress levels can impact the capability of decision making, so as to decide either what stress factors to mitigate or how to support the decision-making process at high-stress time
EVAs: 3 EVAs (test done after EVA, not during)

Title: Study of microbial ecosystem in microgreens
Author(s): Jake Qiu
Objectives: Assess how pathogens introduced by astronauts can be released in an isolated environment and contaminate nutrients
Description: When traveling to space, everything gets sterilized except for one thing – astronauts. Humans are continuous contamination sources and many people house dormant pathogens that could potentially be released to the isolated enclosures that are required in space and on Mars. This project will identify how the microbial ecosystem in microgreens – an important nutrient source for essential vitamins that are easily degradable, can be impacted when inoculated with human-associated cell types. Locations in the habitat will be swabbed for these microbes and previously sterilized microgreens (not for consumption!) inoculated with them. The community structure of the microgreens will be analyzed throughout growth and harvest, and a NASA DNA sequencer will be used to identify any phenotypic changes and any potential pathogenic strains that could cause concern and further investigation
Rationale: Long duration missions will heavily rely on food produced in-situ. While objects and plants can be sterilized, astronauts cannot, and are therefore prone to introduce potentially dangerous pathogens in the isolated habitations. Further knowledge about the amount of pathogen spreading and the ways it can happen will support research to preserve the health status of crews
EVAs: None

Title: Analysis of mineralogy and regime of sand dunes and fluvial processes
Author(s): Ellen Czaplinski
Objectives: Determine the differences between spectra taken in the field during EVAs and in the laboratory, and identify effective spectroscopic techniques for in-situ sample analysis
Description: Features found in the MDRS study area, such as paleo channels and dunes, provide opportunities to access exposures that detail their depositional environment and the role that water played in their formation. Further, studying inverted channels and dunes near MDRS contributes to our understanding of the sedimentation processes that shaped these features, providing an Earth analogue to ones found on Mars. These characteristics are suitable to support the important task of determining efficient spectroscopic techniques for in-situ sample analysis to prepare for future crewed missions to Mars. Spectral information of samples around the MDRS are useful in comparing this area to Mars. Smectites like montmorillonite and nontronite are common around the habitat and are two of the most common clay minerals found on Mars. Studying clay minerals is relevant in that the identification of specific clay minerals can offer information such as the geochemistry of the primary rocks. Analyzing these types of clays in the IR is important, since IR spectroscopy techniques have the ability to differentiate 1:1 versus 2:1 silicate-layer type clays, as well as different chemical compositions of clays (montmorillonite versus nontronite)
Rationale: This comparative study has the goal of identifying differences between spectra collected in the field and spectra measured in laboratory. Do environmental factors significantly change the spectra of samples when compared to measurements taken in the lab? Based on this analysis, appropriate techniques can be suggested for in-situ sample analysis
EVAs: 5-6

Title: Composting and recycling waste on Mars
Author(s): Kasey Hilton
Objectives: Analyze some of the waste produced at MDRS as example of typical waste produce in a habitat on Mars, to determine the opportunities for recycling and composting
Description: Waste produced at the habitat will be analyzed and sorted into nitrogen rich waste (kitchen scraps, grass clippings, ect.), carbon rich waste (paper, wood chips, egg shells, ect.), and non-compostable waste, allows for the possibility of creating a compost pile. A compost pile would not only provide a way for waste to be reused that would otherwise take up space but would also provide plants with nutrients needed to grow and would introduce microorganisms into the environment. For a healthy compost, a 1:2 ratio of nitrogen rich to carbon rich waste is needed. Human waste can be used to modify the ratio towards carbon richer compost. Pending permission, a compost pile will actually be initiated inside the GreenHab, where the plants will provide the necessary oxygen for the microorganisms to start breaking down the material in the compost (which can be used as fertilizer in the GreenHab)
Rationale: Due to the restricted amount of storage available during space travel and limited resources in a Martian habitat, reducing and reusing as much waste as possible is vital. A closed-loop environmental control and life support system is a must for long-distance space travel, and once at destination, it is imperative to reuse as many resources as possible
EVAs: None

Title: Classroom Outreach via asynchronous Q&A
Author(s): Alexandra Dukes
Objectives: Spread news about MDRS and analog missions in a capturing way
Description: The crew received questions from a California school (GK-3) and a Nevada classroom (1st grade) about MDRS and living on Mars. The crew will be videotaped answering the questions in a “73 questions” Vogue format
Rationale: While is it important to spread our research among experts and professionals, it is equally important to have the younger generations informed and interested in what we do!
EVAs: None

Title: Messier objects for outreach
Author(s): Cesare Guariniello
Objectives: Do astronomy outreach by showing the majesty of some of the most spectacular deep sky objects
Description: Project already started before rotation at MDRS. Goal is to observe (and later filter and color) all visible objects out of the 110 in the extended Messier catalogue
Rationale: Get people interested not only in the utility but also in the beauty of space
EVAs: None

Title: Radiological mapping of MDRS and surrounding areas
Author(s): Denys Bulikhov
Objectives: Create a map of radiation around MDRS
Description: Use instruments to measure the amount of certain type of radiations at different heights in the areas surrounding the habitat. Some of the measurement will be taken by instrument mounted on a lightweight drone
Rationale: While Earth is protected from radiation by the thick atmosphere, Mars is much more susceptible to high-energy radiation from space. If astronauts have to spend extended periods of time outside the protection of caves and lava tubes, it is important to know areas with lower concentration of radiations. While the levels measured at MDRS will be relatively low, this project will show techniques to map radiation on Mars
EVAs: 2-3

Title: Students outreach on projects towards Martian mission
Author(s): Alexandra Dukes
Objectives: Inform students about MDRS projects with adequate level of detail
Description: The research projects of crew 202 will be explained and published on social media in three different level of difficulty, aimed at three different audiences: K-6, 7-12, College
Rationale: To engage students across education levels and get them excited about the work being done to place humans on Mars, it is fundamental to be able to speak their language. Therefore, it is important to describe each project in different ways, adequate to the audience
EVAs: None

Title: Photometry of faint objects
Author(s): Cesare Guariniello
Objectives: Measure the magnitude of faint objects with MDRS-14 telescope
Description: MDRS-14 is expected to capture objects with magnitude 14-15. The project aims at pushing this boundary by a large factor, starting from relatively bright objects, like Ceres (M=8.88), to move to faint objects like Pluto (M=14.35), Makemake (M=17.15) and Haumea (M=17.40)
Rationale: Clear dark skies at MDRS give chance to show the potential of astronomy from the surface of a planet in extremely good conditions
EVAs: None

Title: MARSter Chef (Martian Cooking Videos)
Author(s): Alexandra Dukes
Objectives: Provide future crews with video recipes for cooking with the food available in the habitat, and raise the interest of the general public
Description: Crew members will be filmed while preparing meals and explaining recipes that make use of food in the habitat
Rationale: Food is one of the aspects of crewed missions that are often not considered enough. To keep the crew morale high, varied and interesting recipes are often essential
EVAs: None

Mission Plan – December 17th

Crew 201 Mission Plan 17-Dec-2018

Mars Desert Research Station

Mission Plan

Crew 201 – Misión de Exploración-1 (MEx-1)

Dec 15th – 30th, 2018

Crew Members:

Commander: Tania Robles

Executive Officer: Juan Carlos Mariscal

Crew Engineer: Cesar Serrano

Health and Safety Officer/Journalist: Genaro Grajeda

Crew Astronomer/Scientist: Federico Martínez

GreenHab Officer/Journalist: Walter Calles

Mission Plan:

MEx-1 is a Mexican initiative that seeks to encourage the interest of the general population, industry, academia, and government of Mexico about the benefits of space exploration and its applications.

This through the creation of the first Mexican program of missions in MDRS conformed by a team of astronauts and a ground support on Earth. MEx-1 is a mission that had the previous support of an aerospace doctor and specialist psychologists to evaluate the physical and mental conditions of astronauts prior to the establishment of tasks and workloads of the missions.

The general objectives of Mex-1 are:

· Integration of a national multidisciplinary team that provides necessary support to the astronauts’ activities that will be carried out before and after the mission.

· Document and generate the necessary historical information to be able to organize easily later iterations of the mission.

· Generate media impact necessary to attract and encourage the participation of children and youth in space activities in Mexico.

· Encourage students and entrepreneurs to develop business activities focused on the creation and integration of projects that benefit and/or use space or high technology resources related to space exploration.

Crew Projects:


Title: The Multidimensional Fatigue Symptom Inventory

Author(s): Betel Martinez, Genaro Grajeda

Objectives: To know the psychological state and mental fatigue of the astronauts through the daily filling of the mental fatigue questionnaire.

Description: Prior to the mission, the crew of MEx-1 was evaluated psychologically as a team and individually by professional psychologists to learn about different aspects such as their personality factors, cognitive functions, physical state, group interaction, cooperation, resilience, emotional states, reaction to the solution of problems and their socio-emotional development.

During the mission, the crew will perform the daily filling of a metal fatigue test that will be delivered later to the evaluating psychologists. They, from comparing the results with the scheduling and recording of the daily activities, will know the affectations and changes that occurred during the mission in each of the profiles of the astronauts.

Rationale: Crews of astronauts are previously evaluated psychologically multiple times to know if they are suitable to perform their work in space. On a trip to Mars, their profiles will be analyzed prior to the mission and from there establish the routines and daily tasks depending on their physical and mental states.



Title: Crew Wellness Experiment

Author(s): Carlos Salicrup, Genaro Grajeda

Objectives: Measure and document the crew’s weight, water consumption, and pressure variation during the mission.

Description: HSO officer will measure 3 key parameters during the same time of the morning to corroborate the wellness of crew 201. Parameters to be measured and documented are member’s weight, daily water consumption, and blood pressure.

Rationale: Good health and wellness are key to the survival of small or large missions. A healthy crew member will perform as expected by the mission standards and will continue to do so during the duration of the mission whatever it may be. With the controlled data analysis of the crew, a doctor can measure the changes over small periods of time and suggest ways to better upkeep the health of the crew.



Title: Very Small Aperture Terminal (VSAT) Pointing

Author(s): Genaro Grajeda, Federico Martínez

Objectives: Point a VSAT with 3D printed tools

Description: MEx-1 will install, point, test and validate one-way connectivity of Free-To-Air Channels from up to three geostationary satellites located within the reach of the North America region with 3D printed tools in order to experience the difficulties and hardships of intensive work during regular Martian infrastructure building missions.

Rationale: Early astronauts arriving on Mars will need to install infrastructure to sustain early Martian colony activities and operations. Through the testing of 3D printed tools and analog space suits, the process of antenna installation, pointing and other equipment will be a difficult experience. Using this test bed, it will be possible to develop modern tools, and activities to facilitate the astronaut experience in Mars.

EVAs: 4 to 5 EVAs; will be performed over the height of the HAB simulating the classical way of infrastructure installation on Earth for a large coverage area. Location for VSAT installation must be flat and stable with no line of sight obstacles to the selected satellite(s) (Eutelsat 113WA, Eutelsat 117WA and Galaxy 15) and simulate the methodology for current infrastructure installation (Cellphone Radio Bases, regular Radio Access Networks for Internet of Things Networks with multidirectional antennas of 22 to 50 dBs).


Title: 3D Printing in space exploration

Author(s): Federico Martínez

Objectives: The main objective of using 3D printing is to provide us with personalized tools for our VSat pointing project and spare parts. This experiment will provide support on the construction of a rover prototype as well, and an analysis of the Hab will be done to use this technology to provide daily use supplies.

Description: 3D printing is becoming a common and a powerful tool when a unique and made in situ hardware is needed, it gives us the advantage of reducing time and costs, and the variety and quality of materials we can use nowadays it’s becoming bigger and better every year, helping different industries on their innovative and manufacturer process.

Rationale: The transportation of cargo when talking about space exploration, have been a topic since space race has begun, and now companies and space agencies are exploring 3D printing to save cargo, sending a 3d printer and its working material instead of a full kit of tools or spare parts.



Title: Engaging space to the people

Author(s): Crew 201& Crew 187

Objectives: Generate audiovisual content that will be published to increase the awareness of the space sector and the interest of young students and professionals in space exploration from Latin America.

Description: Crew 201 will record videos and take pictures of all of the activities and actions inside the Hab and during EVAs. Then on Earth the material will be edited and used for the subsequent creation of communication channels on different platforms: video, writing and as audio.

Rationale: Some of the most important space programs and agencies have a special and noted interest in science and technology outreach of their activities and missions. This to increase the interest of the population on space activities funded by the government. By doing this, they look to achieve two main objectives: create awareness on the young generation about the possibilities of doing a satisfactory career in the STEM area focused in space, and in showing the taxpayers about the importance of their monetary contribution for space exploration.



Title: Validation of electronics architecture and communication protocols for an exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Validate the function of electronic components in hostile (low) temperature conditions. Validate communication protocols for exploration vehicles in the Martian environment.

Description: Exploration and support vehicles are required for space missions, as well, electronics and communications components are an essential part of such vehicles, so prove and validate new technologies to assure the success of the mission must be a special point of interest in the planning and design of space vehicles.

Rationale: Communications are the base of information exchange, therefore, the electronics used for them must be reliable. In space missions, the development of more efficient, reliable and faster protocols for data transfer, as well as more powerful and smaller electronic components must be constant.

EVAs: 1 EVA. To prove the requirements of distance and computational power of communication protocols, as well as behaviour of electronic components. Required terrain: – Preferably an area with hills or medium-high rock formations.


Title: Behaviour of Artificial Vision algorithms for Autonomous Navigation

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Test the quality of the images obtained by given cameras. Test the efficiency of AV algorithms and tools to identify samples of Martian rocks based on their colour and size. Test the efficiency of stereo vision to estimate distances using bidimensional images

Description: Artificial vision is currently the most important perception method and is the input for many artificial intelligence algorithms for autonomous navigation. Along with other kinds of sensors, such as ultrasonic and laser, artificial vision allows identifying objects based on their characteristics to be identified, according to their importance in navigation and mapping.

Rationale: When exploring other planets, autonomous navigation mitigates the communications delay caused for the distance to Earth. In order for a robot to be able to explore unknown terrains without being dependent of external commands or information obtained via satellite, it must be capable of recognizing and locate itself in the environment, reason why efficient methods for getting and processing images are fundamental. The AV algorithm is part of the development of an exploration rover.

EVAs: 1 EVA. Required terrain: Area with high rock formations, different colour tones of the ground and medium-sized rocks.


Title: Prototype and mechanical testing of Exploration rover

Author(s): César Serrano, Juan Carlos Mariscal

Objectives: Prove the expected behave of the mechanical systems of the Rover.

Description: Since 2012 it has been creating a big Project related to the design and building of space robotics exploration. Today, there exists the experience and expertise of developing Low-Cost RoThe last built prototypes have been related in mining and sampling return. Taking into count this scope, in MEx-1 will validate the function and evaluate the behavior of the mechanisms studied and implemented in our robotic solution. The details of geometry, suspension system, motor housings, wheels, leveling, and assembly were taking into count for the preparation of the preliminary and future designs of this kind of robotic.

Rationale: The developing of an exploration Rover, such as Curiosity and Opportunity, is focused perfectly in the study of the red planet, due to, having a technology of this type helping the astronaut, will provide further risky places, collecting useful data for the understanding of the planet, and futures missions in the planet.

EVAs: 1 EVA. Required terrain: A flat place, with transitions of lightly rocky floor and hard into a muddy one and vice versa.


Title: Martian Soil Analysis for usage on Greenhab

Author(s): Walter Calles, Makiah Eustice (Crew 200)

Objectives: Explore, collect and analyze multiple soil samples on the Martian soil on MDRS to test their capability for plants seeding and growing on the Greenhab. Up to 5 different soil samples will be mixed with different combinations of organic material to see which can be used as Greenhab ground.

Description: As part of the Greenhab activities, we’ll explore multiple locations with different types of soil during the EVAs. We will collect up to 5 different soil samples to test their attributes for plants seeding and growing. By mixing those samples with different amounts of Greenhab soil and some organic material, we’ll try to grow different types of crops on the multiple types of soil. After 5 days of continuous monitoring of the samples, we’ll determine which combination(s) of soil and organic material present the best results. Those samples will be taken to the science dome and analyzed in order to characterize their properties. Every location where the samples were collected will be marked on the MDRS map and marked as fertile or not.

Rationale: The idea of using real Martian soil for seeding and growing purposes is something that could be seen as a huge milestone to ensure future sustainable long-duration missions on Mars. Even though Earth’s soil samples are very different from the ones found on Mars, testing new ways to mix Martian-like desert samples can give a good overview of future next steps for Martian exploration.

EVAs: 1 EVA long enough to reach up to 5 locations with different types of soil samples for recollection.

Mission Plan – Crew 200

Mars Desert Research Station Mission Plan
Crew 200 – Mars Society International Crew
Dec 1st- 9th, 2018

Crew Members:
Commander: Dr. Ilaria Cinelli
Executive Officer: Oakley Jennings-Fast
Astronomer: Andrew Foster
Geologist: Dr. Jun Huang
Engineer: Antoine Bocquier
GreenHab Officer: Makiah Nicole Eustice
Health and Safety Officer: Dr. Lindsay Rutter

Mission Plan:
Crew 200 Mission Plan is an international mixture of science work, education and outreach. The Mission’s key values are:
1. International
2. Diversity
3. Education

Laid out here are the crew’s planned research objectives while at the MDRS:

1. Crew Projects
Mapping emotions (by Commander, I. Cinelli):
Introduction: Emotions and feelings are altered by the environment, and isolation has been
shown to impact human behaviours. Arts is used in this project to communicate how a person could experience endurance in isolation using colours.
Rationale: Mapping emotions in isolation for envisioning endurance
Methods: Since young age, I. Cinelli associates words and numbers to colours, that she sees distributed in space with an order depending on their meaning. Emotions and feelings will be mapped throughout the adaptation in isolation. Acrylic colours will be used to map emotions on a flight-suits.

Cement using Martian Regolith (Oakley Jennings-Fast Executive Officer)
Introduction: Objective is to test the strength of premix concrete (cement plus Earth soil as aggregate) and Portland cement plus local soil. Supplies set up in science dome and calculations started for weights of each material. Rationale: Important for understand building structures on Mars using available materials on the planet.
Methods: Mix various ratios of cement and local soil and water and test the strength with known weights until failure.

Search for Extremophiles: (by Lindsay Rutter, Health and Safety Officer)
Introduction: Understanding what microbes survive the Mars-like environment around the MDRS can serve as a proxy to the type of microbes that may survive Mars itself. Identifying sample microbes can be achieved with commercial-made microscopes, but can also be achieved with homemade microscopes in the event that a more official microscope is not available.
Rationale: Microbe survival in Mars environments has important implications for planetary protection and crew immunity.
Methods: Build homemade microscopes from economical material, namely by removing the lens from laser pointers, attaching them to camera phones, and placing the sample on a flashlight covered by paper and plastic slides. Collect microbes from nearby the MDRS. Take photos of magnified microbes using both commercial and homemade microscopes.

Energy Exchanges: Modeling and measurement of the thermal exchanges of the Habitat. (by Antoine Bocquier, Crew Engineer)
Introduction: Modeling the energy behaviour of the Habitat is key to optimize the use of available resources. By building an energy model of the Habitat that can be validated by in site measurements, it would be possible to adapt it to a Martian environment.
Rationale: A Martian station will need to be a “smart building” enabling to monitor resources use and perform failure detection and recovery. In MDRS, it will be useful to have a better assessment of the thermal power dissipated compared to the one generated.
1) Build a simplified energy model of the Habitat using the bond graph method
2) Take measurements via an infrared camera of the Habitat and find out its parameters to refine the model
3) Compare software simulations with measurements to validate the model
4) Adapt the model to a Martian environment

GreenHab Outreach (By Makiah Eustice, Greenhab Officer):
Introduction: Grow experiment at same time as a school in Canada
Method: Plant salad seed, check height each day
Rationale: Outreach to promote Mars exploration and green livinac

Mars VR (By Makiah Eustice, Greenhab Officer)
Introduction: Develop and film walkthroughs of training scenarios
Rationale: Crew 197 didn’t complete these tasks.
Method: Decide on training scenarios, practice, and film (annotate)

MDRS Digitization (By Makiah Eustice, Greenhab Officer):
Introduction: Understand sensors and electronic systems an find ways to implement “Smart Hab” system
Rationale: Mars would have smart systems that are connected, controlled, and archived for real time decision making
Method: Track all systems (water, power, environmental, telemetry) and find ways to improve

Schools Outreach (By Andrew Foster, Crew Astronomer)
Introduction: Inspire the scientist and engineers of the future through a schools outreach project
Rationale: The colonization of Mars will involve people of many nationalities and backgrounds working together towards a common goal. Education and outreach is the foundation for this great project.
Engage school and community in Western Qatar with a variety of exciting projects:
1. School
1.1 Year 8 HAB design – HAB design questionnaire “Ask The Experts” (from PHSE lessons), to be carried out @ MDRS. Questionnaire results to be presented in PHSE lesson late December.
1.2 Year 7 Science club – Introduced science project list. Follow up questions to be sent before mission start.
1.3 Primary Yr 6: Light project, two experiments:
i. Measure and compare Naked Eye Limiting Magnitude at Dukhan and MDRS, using star chart for Cygnus.
ii. Construct a Cooking Oil Differential Photometer, measure and compare sunlight transmission at Dukhan and MDRS.
1.4 Primary (Yr 3-6) Question List – Compilation of all questions from classes
1.5 Oryx award students (yr 12): Climate change project- Assess energy supply and usage at MDRS, use as input for a sustainable energy project.
1.6 Outreach: Maintain blog site, send at least daily updates for all projects. (text / photo / video) during the mission.

2. Scouts
(Dukhan Troupe 33101) – Mission logo design competition complete. 2 x science experiments:
i. Biology / Greenhab food growth rate comparison “Cress Race” comparing GreenHab to local growing conditions.
ii. Human factors / space suit / EVA impact on heart rate using fitness monitor & app.)

Mission Astronomy (By Andrew Foster, Crew Astronomer)
Introduction: Carry out a mixed Astronomy program consisting of science measurements and astrophotography. Take some beautiful images and share them with the community.
Rationale: Utilise the great astronomy facilities at MDRS, demonstrate the capability of the MDRS observatories by contributing to the science community and delivering some beautiful astrophotography as a means to engage the public.
i. Science / Astrophotography – Differential Photometry w/ American Association of Variable Star Observers
ii. Cometary Coma Morphology imaging (Planetary Science Institute campaign)
iii. Wide field astrophotography campaign.
iv. Solar prominence time lapse imaging.

Crew 197 arrives at the MDRS in 10 days!

Crew 197 (VR CrowdExplorers)

Overall Goals of Mission

  1. Create a research whitepaper for using VR to train analog simulation participants.
  2. Pilot out MarsVR Training scenarios and script/enact new scenarios.
  3. Update interior/exterior scans for MarsVR future releases.
  4. Capture video & 360 footage for future promotional videos.
  5. Prepare the station for beginning of field season.
    • Installation of new Donor & Memorial plaques. (James)
    • Start up some plants in the GreenHab.
    • Setup of new HAL workstation & displays. (James)
    • Updates to Internet Router firmware & configuration. (James)
    • Other logistical tasks.

Crew will be IN SIM starting the afternoon of Sol 1 (October 22).

Crew 194 Mission Plan

MDRS Crew 194

Wilderness Medical Society

Mission Plan

Nothing speaks to the essence of “wilderness” more than another planet. Mars represents the most remote and austere environment that humans have ever contemplated exploring. To simulate the demands of living and working on Mars, this group from the Wilderness Medical Society will serve as crew 194 at the Mars Desert Research Station. We will use MDRS as a base of operations for exploring Mars.

During this time, we hope to study medical issues unique to astronauts, space flight, and life on other planets. While our crew has considerable experience with delivering routine medical care and medical care in some of the most remote environments on this plan, we hope to gain an additional dimension of knowledge while considering the provision of medical care on Mars. In particular, we will study and simulate emergencies related to changes in normal human physiology due to microgravity, changes in ambient pressure, relevant toxicology, radiation, space motion sickness, and behavioral health and performance. We will also study ultrasound as an imaging modality in spaceflight.

A significant component of our learning will also be experiential. We have studied the work of prior crews from an engineering and research perspective, and hope to apply some of these lessons on EVAs. However, as our primary study is related to the care of injures crew members, our EVAs will frequently results in “unintended” consequences in which the crew will be forced to call on their medical and wilderness skills in order to survive.

Finally, we have also brought along technology to assist with our operations. We hope to use rapid process improvement software to help craft operational and design changes for our mission and the Hab.

We are thrilled about the opportunity to live and work at MDRS for a week, and would like to thanks both the Mars Society and the Wilderness Medical Society for this wonderful opportunity.

Mission Plan – April 22nd

Mars Desert Research Station Mission Plan 22 April 2018

Crew 193 – PHEnOM Gold Crew

Gold Crew:

Commander: Anima Patil-Sabale

Executive Officer: Doug Campbell

Engineer: David Attig

Geologist & Astronomer: Eric Shear

Health & Safety Officer/Geologist: Shawna Pandya

The Gold Crew is composed of a team of Project PHEnOM Citizen Scientist-Astronaut Candidates from the US and Canada. Along with a great passion for space exploration, every member in the crew has a varied skillset in addition to expertise in their specific field. Our Commander is a Software plus Aerospace Engineer, and has worked for NASA while our Health and Safety Officer is a Physician and a Martial Artist in addition to many other things. Our Executive Officer is a Mechanical and Biomedical Engineer, and works in the health care sector, our Engineer is a Mechanical Engineer, a private pilot and a drone pilot, our Astronomer and Geologist is a Physicist/Engineer who’s the first deaf astronaut plus an inventor who’s designed and built a cryogenic CO2 scrubber.

Our Mission Plan:

Research for Mars colonization is in full swing. Research crews have been arriving at Mars and living in the habitat at the Mars Desert Research Station setup at Acidalia Planitia.

The Gold Crew is #193. Originally made up of 6 crew members, the crew lost their first Executive Officer Omar Samra to international bureaucracy. He wasn’t able to acquire a Martian Visa and the crew had to be deprived of his expertise in extreme environment performance. He was kind enough to share his expertise by training the crew virtually to get them ready for the mission.

After their arrival at Mars, the crew plans to get started with research on Sol 1 itself.

They will perform the Marble Ritual site EVA that is mandatory for all new crews arriving at Mars, to practice and test what they have learned in their simulations.

Laid out here are the crew’s planned research objectives while at the MDRS:

1. Emergency EVAC EVA (possibly using a drone depending on the arrival of the shipment): Scout for locations to take shelter during an emergency like a dust storm or fire while inside the habitat or out on EVA.

2. Sunspot and Solar Flare Monitoring: One of the chief threats to a human Mars mission is the sun. Solar flares are giant proton storms that can sicken or kill human astronauts with particle radiation. In this research we will use the Musk Observatory to monitor the number of sunspots on the Sun’s surface, which is thought to correlate to solar flare activity.

3. Shortwave Texting on EVA’s: To open up opportunities for astronauts who may not be able to hear, we are testing a device that allows two users to send text messages over a ham radio link, without cell service. The devices are called Beartooths, and pair with the users’ phones with Bluetooth.

4. GPS Route Measurements: A crew member on EVA will take periodic GPS readings of his location over time as he moves across the landscape. A researcher on Earth will overlap the coordinates of each location onto a terrain map to assess the metabolic efficiency of each EVA.

5. Waterless dish cleaning: Water is also not abundantly available on many locations of mars which make it a valuable resource. Bringing water resources to mars is costly because of the weight and amount needed to sustain life. Therefore, reducing the amount of water used for day to day tasks will be of utmost importance to future colonisations. Using Martian sand and UV light to clean and sterilize tableware.

6. The MAG (Maximum Absorbency Garment) utilization study: Help answer questions like to what extent does the use of MAGs for extended EVA’s help the crew? Ways to mitigate discomfort? Or does it take getting adapted to?

7. Spacesuit Helmet Fogging: After EVA experiences, compile a list of issues faced and suggest possible solutions to improve ventilation and defogging methods.

Thank You!

The Gold Crew

MDRS #193