Science Report – April 20th

MDRS Crew 192 Final Science Report (We science the sh*t out of this!)
Richard Blakeman, Executive Officer
April 20, 2018 (Sol 12)

MDRS Crew 192 Mission Science report summary:
This report describes the outcomes of the science and research projects conducted during the MDRS Blue Crew 192 mission. It should be noted that on some of the research studies, the primary data collected requires additional time for analysis and conclusions.

Spacesuit visor fogging study
This research was conducted using a double-blind study to test off the shelf cleaning products (Joy dishwashing liquid and Johnson’s Baby shampoo) and their effectiveness against spacesuit visor fogging. Both one-piece and two-piece (separate helmet) spacesuit configurations were tested along with random controls to identify variables and collect data. The data will require analysis before any final conclusions can be made; however, preliminary data suggests that exertion levels contribute to fogging phenomenon. Additionally, baby shampoo appears to have slightly superior results in fog reduction. There were occasional reports of minor irritation but it appears to be not significant.

Hand exercises using hand relief, well-being balls
This research was conducted as single blind study to test the use of well-being ball for had exercise before EVA determining the dexterity and comfort of hands. After few measurements, discontinued the study as the exercises were creating discomfort for the crew

Crew wellness observations This is survey-based study using the Wellbeing questionnaire before, during and the end of the study to measure the happiness scale of the crew

Crew weight measurements and analysis (EVA) Daily weight measurements were taken along with the pre and post EVA analysis. Preliminary results indicated the weight loss after EVA is proportional with duration of EVA and physical exertion

Crew muscle measurements Daily crew skeletal measurements including deltoid and calf muscles were taken. Preliminary analysis show reduction in deltoid muscle in majority of the crew.

MAG (Maximum Absorbency Garment) utilization (MAG, i.e. Depend-type undergarments) were worn by crewmembers on all EVAs. This provided additional crew comfort, health, welfare, and safety protection on increasingly longer and complex EVAs. NASA and the military use the MAG protocol for missions involving extended operations involving pressure suits, EVA space suit, and undersea hard suits where waste collection issues can significantly impact crew heath and mission success.

Ultrasonic rodent repulsion experiment Three off the shelf plug-in ultrasonic rodent repulsion emitters were placed in the lower habitat, crew quarters deck, and the upper level deck. There was only one intrusion of a rodent during the mission located on the crew living deck near the refrigerator. A trap was baited with a small piece of bread coated with peanut butter and the intruding rodent was captured unharmed. On a subsequent EVA the rodent was released on Galileo Road (Route 1104). An additional rodent intruder was discovered during the night in the south-side, upper level, interface between the wall and the habitat roof structure. The intruder rodent was caught in a glue trap and did not survive. The initial conclusion is that the ultrasonic rodent repulsion emitters are ineffective. Physical traps need to be continuously deployed to capture intruder rodents and additional repulsion technologies tested.

Astronomy discussions and visual observations Conducted night time observational astronomy lectures describing various constellations and planets. The crew was able to observe several satellites and wonder at the incredible view of the heavens above. Additionally, conducted daytime solar observations using the MDRS solar telescope array. However, computer interface issues and some clouds affected viewing. Some imagery was obtained using the optical sun lens and a smart phone.

Geology observations conducted during EVAs Each EVA offered a rich and immersive experience into the local geology. Close physical inspection of structures as well as photographic and video imagery was taken for later discussion and analysis.

EVA touch screen glove testing The crew brought several types of touch pad sensitive gloves to use during EVAs. These proved to be an invaluable tool for the crews as it allowed direct interface with multiple electronic recording devices. Recommend that these be used by future crew to assist with video and photographic imagery.

Water contamination prevention and mitigation procedures
All of the habitat water storage tanks were meticulously cleaned and sanitized over the course of many days to remove any contamination and tank residue; additionally, multiple fresh water transport and loading runs to and from Hanksville was accomplished by the crew. The water transfer pump was also meticulously clean to prevent future contamination. The main water filter was also replaced by the crew.

Yuri’s night distilled spirits experiment The distillation of a celebratory spirit was both a crew morale booster and a fascinating chemistry experiment. The process took several days to complete and the resulting product was equally distributed to each crewmember in a celebratory toast to the accomplishments of Cosmonaut Yuri Gagarin for becoming the first human in space April 12, 1961.

Still and video imagery Still and video imagery has been collected by all crewmembers throughout the mission in order learn and better appreciate the challenges and requirements necessary to be an effective Martian crew.

Spacesuit hydration prototype system operational testing and evaluation An experimental prototype EVA hydration system was constructed and operationally tested on multiple EVAs both mounted and dismounted. This system has shown promising results as it can be utilized while operating a rover, ATV, as well as dismounted EVAs. Astronaut hydration, particularly during heavy exertion, is an important physiological need and critical to crew safety.

Warm Regards from Florida,

Joseph Dituri, PhD (c), CDR, US Navy Saturation Diving Officer (ret)

Science Report – April 11th

MDRS Crew 192 Science Report (We are going to science the sh*t out of this!)

April 11, 2018 (SOL 3)

Richard Blakeman, Executive Officer

This crew has performed magnificently despite the challenges of having all the original science and engineering projects removed from the mission. The crew has pooled their individual and collective talents and shown incredible resourcefulness, creativity, imagination, and teamwork to develop multiple real-world science and engineering research and experiments.

The current list of projects that are being conducted include:

Spacesuit visor fogging study: Using off the shelf cleaning products which are used to develop mitigation strategies to solve the visor fogging issues. These are guaranteed to not scratch, damage or otherwise alter the visibility of the suits.

Hand exercises using hand relief, well-being balls: To measure comfort and hand dexterity during EVA

Crew wellness observations: Questionnaire designed to measure crew well-being during the duration of the mission

Crew weight measurements and analysis (EVA*): Pre and post weight for all personnel designed to measure body fluid loss during EVA

Crew muscle measurements: Physical measurements using tape measure to indicator of skeletal muscle glycogen reserve during mission

Ultrasonic rodent repulsion experiment: Using off the shelf, plug-in ultrasonic transmitter to observe if they deter rodent intrusions.

We noted a squeak at ~0830 today and have no confirmation but suspect there is a mouse about the house. We have also cleaned again and moved stove and frig to more thoroughly clean. What a mess behind both. Manual trap has been set IVO the squeak.

Astronomy discussions and visual observations since the main telescope is non-functional

Geology observations conducted during EVAs

EVA touch screen glove testing: We purchased several different kinds of touch pad sensitive gloves and anecdotally determining which ones are better for use with phone screen cameras.

Water contamination prevention and mitigation procedures

We have rolled the water tank from the trailer into the RAM and are going to do recurring EVAs to clean and sanitize the water tank for use with future crews to ease the requirement to make multiple trips into town for water saving fuel, vehicle wear and tear as well as cost of fuel for the society.

In honor of the achievements of Cosmonaut Yuri Gagarin, we have used a ration of our potatoes along with banana chips, apple slices and water. We heated this and combined it with yeast from the cupboard. The crew anticipates the ability to brew and enjoy a beverage made from distilled dehydrated potatoes on Yuri’s night (12 April).

The crew continues to take both still and video imagery for later analysis.

Science Report – February 16th


Hello there!

My name is Atila Meszaros and I have the honor of being the first intern of The Mars Society. I have been on MDRS for more than a month. During the first weeks (during the rotation of the Purdue crew), I researched all the literature and information necessary to start working on the Aquaponics project.

What is Aquaponics? It is a system that behaves like a small ecosystem: it combines fish, plants, and bacteria to generate processes of greater efficiency. The fish excrete ammonia, which if its accumulated becomes toxic, water with ammonia goes through biofilters, which contain nitrogen-fixing bacterias. These little ones, are responsible for the conversion of ammonia into nitrites and then nitrates, which, not only are not toxic but serve as nutrients for plants. In this way, the plants filter the water, which returns to the fish, practically new. The objective of this research is to verify if an aquaponics in a Martian Analogous Habitat is really advantageous, comparing to the common gardening methods.

I was one of the crew members of the fantastic Latin American crew 187. During my rotation, I was able to assemble almost all the equipment, while, at the same time, working with my project related to the resistance of Peruvian seeds to Martian analog soil. The seeds that I am using are quinoa and kiwicha. Both are fruits with high nutritional content, and knowing that both are powerful candidates for future Martian missions, is the goal of the project.

The crew of Supaero will be arriving tomorrow, and hopefully, the agronomic part (without fish) of the aquaponics will be working. To compensate for the lack of fish (and its residue: ammonia), external nutrients will be added. The aquaponics project is a long-term one, and to achieve all the goals, I will make a protocol guide which will serve the future Green Hab Officers so that they can be guided during the course of the project. I know it will be in very good hands.

On the other hand, the hunting of halophiles has just begun. Halophiles are beings that, not only support the high amounts of salts but, are in their optimal state. To find them, we are looking for gypsum in different areas where their presence has been previously registered. We have already defined the points of interest and I have already been trained for the hunt.

Also, I consider myself Shannon’s assistant and I try to support in everything that is necessary. One of my personal goals is to learn as much as I can from her. She is a fantastic person and above all, an incredible teacher.

In the course of these weeks, the number of science reports will increase, so check it out!

At the end of the internship, I will make a final report with all the projects we have done and the progress of all the investigations.

It is an honor to be able to give my small grain of sand to this great project that is Mars.

Ad Astra!

Atila Meszaros


¡Hola a todos!

Mi nombre es Atila Meszaros y tengo el honor de ser el primer interno de The Mars Society. Me encuentro en el MDRS desde hace más de un mes. Durante las primeras semanas (durante la rotación de la tripulación de Purdue), investigué toda la literatura e información necesaria para empezar a trabajar en el proyecto del Aquaponics.

¿Qué es el Aquaponics? Es un sistema que se comporta como un pequeño ecosistema: combina peces, plantas y bacterias para generar procesos de mayor eficiencia. Los peces excretan amoniaco, el cual al acumularse llega a ser tóxico, el agua con amoniaco pasa a través de biofiltros, los cuales contienen bacterias fijadoras de nitrógeno. Estas pequeñas son las encargadas de convertir el amoniaco en nitritos y posteriormente en nitratos, los cuales, no solo no son tóxicos, sino sirven como nutrientes para las plantas. De esta manera, las plantas filtran el agua, la cual regresa hacia los peces, prácticamente nueva. El objetivo de la investigación es comprobar si es realmente ventajoso un aquaponics en un Habitat Análogo Marciano, respecto a los métodos de jardinería comunes.

Fui uno de los tripulantes de la fantástica tripulación latinoamericana 187. Durante mi rotación, pude ensamblar casi todo el equipo, mientras trabajaba a la par en mi proyecto relacionado con la resistencia de semillas peruanas a suelo análogo marciano. Las semillas que estoy usando son de quinoa y kiwicha. Ambas son de los frutos con mayor contenido nutricional, y saber que ambas son potentes candidatas para futuras misiones marcianas, es el objetivo del proyecto.

La tripulación de Supaero estará llegando el día de mañana, y con suerte la parte agropónica (sin peces) del aquaponics estará funcionando. Para compensar la falta de peces (y su residuo: amoniaco), se añadirá nutrientes externos. El proyecto del aquaponics, es uno a largo plazo, y para conseguir todos los objetivos voy a realizar una guía protocolo la cual servirá a los futuros Green Hab Officers para que puedan guiarse durante el transcurso de la investigación. Sé que estará en muy buenas manos.

Por otro lado, la caza de los halófilos recién ha empezado. Los halófilos son seres que, no solo soportan las altas cantidades de sales, sino que, en ella, se encuentran en su estado óptimo. Para encontrarlos, estamos buscando en yeso en distintas áreas donde ya se ha registrado anteriormente su presencia. Ya hemos definido los puntos de interés y ya he sido entrenado para la cacería.

También, me considero el ayudante de Shannon y apoyo en todo lo que sea necesario. Uno de mis objetivos personales del internado es aprender todo lo que pueda de ella. Es una fantástica persona y sobre todo, una increíble maestra.

En el transcurso de estas semanas, los reportes de ciencias van a aumentar, por todo el trabajo que estaremos haciendo. ¡Échele un ojo!

Al finalizar el internado, realizaré un reporte final con todos los proyectos que hemos realizado y los avances de todas las investigaciones.

Es un honor poder dar mi pequeño grano de arena a este gran proyecto que es Marte.

Ad Astra!

Science Report – February 10th

Update information:

The crew who vomited yesterday recovered well.

The crew performed regular work completely.

The crew had enough sleep and rest in the last night.

The crew had breakfast and lunch today as normal. Currently, the crew has an appetite.

There are no adverse symptoms relating to the allergy observed for the crew.


Thank you.

Tatsunari Tomiyama, AHFP

Science Report – February 2nd

Astronomy Report

Name: Julia De Marines

Crew: 188

Date: 02/02/2018

Sky conditions: Hazy

Wind conditions: low to none

Observation start time 4:30 pm

Observation end time: 5:00 pm

Summary: The last two days have been fairly cloudy and I decided to wait until a sunny day to begin solar observing. This morning was very clear and sunny but I was out on an EVA until 13:00 hours. After lunch and some down time I went out to use the Helioscope. By the time I familiarized myself with the equipment and procedures and programing the teslecope, the sun was starting to get low on the horizon. Also, I goofed and put in Daylight Savings Time instead of Standard Time, so I had to redo the programming of the telescope to be positioned correctly. I have a similar control to my personal telescope so it wasn’t a big deal; however, it just ate away at precious time. By the time I had the sun in the eyepiece, it was quite challenging to be able to see the Sun as the eyepiece was too high. I wasn’t sure if there was a way to rotate the direction of the eyepiece to yield a more favorable angle. I didn’t see an obvious way but perhaps I missed something. Stepping on the small chair in the dome is not a safe idea either. I was able to snap a few shots of the sun though the H-Alpha filter through my phone but it is probably not in focus and the sun was dipping below the lip of the dome retractable door.

Objects viewed: Sun

Problems encountered: Eyepiece too high to easily view the sun. Programmed the scope incorrectly at first, observed too late in the day.

Further questions: I was hoping to get some advice or suggestions on an astrophotography artist project I had in mind. I was inspired by watching the sun setting over the nearby hills and I was wondering if there would be a way to capture my crew eclipsing the sun as it is setting over the hill? It isn’t feasible with the Helioscope because the lip of the dome door is too high and I think the magnification is too high. Also, I think the Hab will eclipse the dome before the Sun sets judging by the shadow of the hab as I was leaving the dome. With the equipment we have available, can you think of a way to do this? We were able to accomplish this at Sommers Bosch observatory in Boulder but it’s been too long for me to recall details of how they did this. Please let me know if you have any suggestions for a safe way to accomplish this! Thank you!


Science Report – January 20th

Good evening Earthlings,

A summary of the crewmembers research follows:



This drone will map the soil of the MDRS during two weeks which will help to take images at 40 meters of height to be later analyzed by a digital processing software which will help us to better understand the characteristics of the Mars surface as well the automatic pilot of drone will help to astronauts recollecting information in difficult areas to explore. After that Using digital image processing algorithms, we will determine the characteristics of the surface of the MDRS using Matlab to analyze the images taken by the drone.



This device will monitor with the E.C.G sensor as well as some important aspects like the pressure before each EVA of Crew 187 LATAM-II. This device will be able to measure the internal temperature of the astronaut as well as the humidity inside the suit in addition ECG module moreover the body position, galvanic response skin that will transmit the data to the user interface to PC and will get the support to Crew 187.



Analyze the dynamics of different cognitive abilities and its relationship with fatigue levels during the mission, in astronauts and to compare them against a matched control group of external participants not related to the Analogue Simulation. Fourteen adults will be part of the study. A control/cases design will be employed. 7 subjects that are part of the astronauts group of Crew 187 LATAM-II and seven persons paired to every participant from the cases group will be used as the control group. The groups will be paired by the sex, age, lateral dominance and level of studies. The subjects from the support group and the control paired will be chosen voluntarily. The study will be divided in three stages: “pre-mission”, “during-mission” and “post-mission “In each stage, fourteen participants will solve assigned COGNIFIT and Multidimensional Fatigue Test.



Analyze the dynamics of cooperation and reciprocity between the Analogue Simulation Crew 187 LATMA-II members 2 women and 4 men between 23 and 30 years old will be part of the study. After that the information of the cooperative behavior between crew members during the analogue simulation to Mars, will be apply a Collective-Risk Social Dilemma in which six astronauts will be players and one coordinator. This task will be applied five times for two weeks.


Our search for the lovers of extreme just began. Halophiles are organisms that can flourish on high salinity environments, and MDRS sorroundings are the perfect place to haunt them. We’ve made a Halophile Sampling Method Protocol for tomorrow’s EVA to perform a regular sampling on El Dorado Canyon and it will be useful for our next explorations on Copernicus Highway.

The aquaponics isn’t running yet, but it’s almost completely build up. New Moringa seeds are coming pretty soon. We are waiting to do some equipment tests and after that, only one week will be necessary to start running it.

Today Atila’s project related to quinoa and kiwicha just began, pictures showing the planted pots with the seeds on the Mars analog soil are attached. We are looking forward to seeing those babies germinate. Previous germination test suggests that we are expecting seedlings for Sol 12. We will let you know

Researcher: Luis Jose Antonio Diaz Lopez

It was checked that the control modules: DS18B20 + RTC DS3132 + SD CARD are working correctly. The programming of the microcontroller is ready to perform the measurement of the two temperature sensors to obtain the values inside and outside the suit used during the EVA’s. The data sensors are transmitted to a cell phone via a bluetooth module and also store them in a .csv file inside a microsd card for further processing. Tomorrow (SOL 9) it will be tested in a EVA.

Researcher: Tania Robles

Science communication and documentary to space projects of young scientist and professionals in Latin America.

Progress: The documentary process on the participation of young people in space science and technology in Latin America has advanced. According to the observation of the behavior and participation of the crew members, videos and notes about each member have been taken.

Today, the first personal interview was held with the GreenHab Officer, where personal and professional issues related to their projects, decisions and future in the space area in their country and in the international community have been addressed.

In the following days, the missing members will be interviewed and shots will be taken in each one of the work and development environments of the crew members.

Researcher: Oscar Ojeda

Progress: There are two projects in course, the testing of the Cóndor Space Suit Simulator, and the Testing of the PXCM based wheel for a planetary rover. All systems had to be transported completely unassembled, so the first task was related with the assembly and testing of them. At this point the Rover is completely assembled and the software will be tested in the next two Sols. The Space Suit Simulator has already been assembled and tested on short range and mid-range EVAs, the systems of the suit are all nominal, and further testing on mid and long range EVAs will be undertaken in the last 7 Sols.

Researcher: David Mateus

The lysimeter has been assembled and calibrated, in this moment it is tested with Martian soil and without plants. tomorrow It is expected to replant quinoa over the soil that it is tested. The idea is to measure evapotranspiration over this soil, in order to make a list of recommendations to improve the conditions on the greenhab, with the objective of reducing this phenomenon.

Researcher: Cynthia Yacel Fuertes Panizo

Mobile application as help agent in MDRS


The purpose of the application is to benefit the majority of the crew members, that’s why I analyzed the market share of mobile operating systems worldwide, a report published quarterly by Gartner, a leading company in market research. worldwide in the technology area. Therefore, the app will be developing to Android.

In order to choose the software of the tools that will be necessary like game engine, IDE (Integrated Development Environment) and augmented reality SDK, the following methodology will be use: First, list the different kind of software of each tool. Second, get the list of the top software. The third step is composed by two parts quantitative and qualitative analysis. Finally, the software of the tools is selected. In this way, Unity (game enginee), Monodevelop (IDE) and Vuforia (augmented reality SDK) are chosen (1).

One of the outputs of this project is an app for the crew astronomers. The target of this app will be the Hand Control of the Musk Observatory, and as it’s appreciate in the picture attached, the app already recognizes the real Hand control.

(1) C. Fuertes Panizo, “Aplicativo móvil de realidad aumentada para mejorar el proceso de enseñanza – aprendizaje”, 2017.

Astronomy Report – January 15th

Science – Astronomy

Name: Cynthia Fuertes Panizo

Crew: 187

Date: 15JAN2018

Sky Conditions: N/A

Wind Conditions: N/A

Observation Start Time: N/A

Observation End Time: N/A


Just the status of the Musk Observatory was checked.

· Inside the Manual box was a battery (picture 1).

· Inside Quick Guides box, the Quick Guide and a hand control were found with an advice that said “Spare hand control. Please do not use unless instructed by the astronomy team”. Don’t worry, there is not an intention to use it (picture 2).

· The black box “Sirius Observatories” was turn on. After cheeked the full status of the Musk Observatory, I turned it off (picture 3).

· The picture of the astronomy box is attached (picture 4).

· The astronomy laptop was found in a case on the shelf in the lower hab (picture 5).

· In general, the Musk Observatory looks in good condition. I can’t wait to see the sun from Mars.

Objects Viewed: N/A

Problems Encountered: N/A

Science Report – January 13th

MDRS – Crew 186 – Final Geology Report

Research Project and Goals

The need to reduce payload mass for future space exploration is imperative, especially for long-term missions. Experts in the field or space exploration have been working for years on concepts of In-Situ Resource Utilization (ISRU). The idea of finding, collecting, processing, and using materials found at the destination requires various steps: we need to determine what materials are present and what is their abundance, accessibility, and usability; we also need to figure out what are the best ways to collect them; finally, based on the materials and their properties, we can decide how to process and use them. The simplest ISRU designs propose production of water, oxygen, and propellant [Sanders and Duke,
2005; Cuadros and Michalski, 2013]. However, establishment of bases on Mars will probably require the use of in-situ construction materials and metals, which must be easily accessible [Cooper, 2002; Curreri and Criswell, 1999;
Muscatello and Santiago-Maldonado, 2012; Sacksteder and Sanders, 2007; Wan et
al., 2015]. Identifying appropriate locations, with an adequate amount of resources will be a major factor for the selection of human landing sites, together with the scientific importance of the site [Horgan et al., 2013].

The goal of this project has been to test the use of remote sensing (performed in various locations) to support In-Situ Resource Utilization. Assessment of mineralogy and temperature readings – via remote sensing – has been performed to provide information about material abundance, water content and thermal inertia. The latter will be correlated to particle size and cohesiveness of the material, which in turn suggests the most appropriate tools to effectively collect the material for processing. Simple collection tools including rock hammers, spoons, and trowels have been evaluated in terms of ease of use, and efficacy of collection of the material, based on the physical properties of the material.

The MDRS region, in the Colorado Plateaus, is a good Mars analog, especially in the areas pertinent to the middle Jurassic Entrada Sandstone, the middle and and late Jurassic Morrison Formation, and the Dakota Sandstone. These areas exhibit mudstones and sandstones mainly composed of clays (montmorillonite, illite, and kaolinite, often coated with hematite), strata of paleo-gypsum and other sulfates, and recent evaporites. Most of those minerals are present close to regions of geological interest on Mars, and are dug on Earth for construction and other purposes.

Figure 1. Geology of the MDRS area

EVAs, samples, and results

Six geologic EVAs have been performed by the crew, visiting the following regions: URC North Site, area East of Greenstone Road, and The Moons (Morrison Formation and Dakota Sandstone); “Boilermaker Canyon”, previously unexplored by MDRS crews (Entrada Sandstone and lower Morrison Formation); Skyline Rim (Mancos Shale). The crew geologist and the rest of the crew collected a variety of samples in these location, and analyzed them with a “PANalytical QualitySpec TREK” portable spectrometer. The 86 Visible and Near Infrared (VNIR) spectra gave information about the mineralogy of the samples, and will be used to assess water content in the various locations. The geologist also measured temperature of rocks and soil at different depths and in different conditions, in replacement of measurements that were supposed to be taken with a thermal camera, which was not received in time for the mission. These measurements will be used after the end of the mission to determine the correlation between thermal inertia and physical properties of the material, such as cohesiveness and bulk size. The geologist used a rock hammer and a trowel to simulate collection of different material, under simulated Martian conditions for what concerns EVA suits and bulky gloves.

The EVAs brought the analog astronauts through diverse fields, ranging from plains covered in clays and characterized by salt deposits to deep canyons where million of years of strata are exposed. All the types of terrains are found on Mars, though the presence of large angular boulders is more prominent in most Martian landscapes. Analysis with the portable spectrometer confirmed the presence of mudstone and sandstone, with a few layers of conglomerates, mainly composed of illite and montmorillonite, with some samples of chlorite shales. The iron is almost all present in the form of hematite, thus reducing the occurrence of nontronite. Receding water from the Jurassic Sundance Sea left behind strata of salts in period of dryness. The salt is mainly sulfates, which (together with perchlorates) is present on Mars in various locations of geologic interest. White layers of gypsum, in the form of transparent selenite and white satin spar in the Morrison Formation, are accompanied by pink dikes of manganese sulfate in the lowest strata. Spectra will be further analyzed for water content and impurities. The results were extremely satisfactory, both in terms of Mars analog mineralogy and for what concerns collection of the samples with the various tools, and yielded useful outcomes for ISRU on Mars, described in the last section.

Difficulties and lessons learned: towards Mars

The experience in this project at MDRS was twofold informative, on the geology aspect and on the exploration aspect. The crew geologist, as an analog astronaut, had to face various difficulties in this mission: unexpected situations require a certain amount of flexibility. For example, the absence of the thermal camera, which can be considered analogous to an instrument malfunction, required a last-minute change in the details of the research project. Contingent situations, such as weather or communication failures cut short some of the EVAs, thus reducing the amount of time spent in the field, which of course is much less than what would be spent on a field expedition on Earth. Instruments which are very simple to use on Earth, such as the portable spectrometer or a marker to write on the clipboard, are much harder to use when the analog astronaut is incumbered by a space suit and bulky gloves. With much pride, our crew geologist managed to never break simulation, though at times he had to find ingenious solutions to be able to operate his instruments or to reach certain locations. On the other side, all these occurrences suggested ideas for better design of astronaut tools for use on planetary surfaces, where the presence of gravity needs to be added to the bulkiness of the garments (in orbit, astronauts experience the problem of large gloves, but can have a variety of tools just attached to their belts without their movements being made harder by gravity). Areas that require long walks because not accessible by vehicles suggest that surface EVAs will be probably shorter than in-orbit EVA: the crew geologist performed four EVAs in five days without particular overexertion, but a single EVA to Boilermaker Canyon was harder than multiple EVAs, because of the configuration of the terrain and the longer hiking distance. From a geologic perspective, the site also provided valuable lessons: besides the analogies with Martian mineralogy, the MDRS site gave information on how to use remote sensing to evaluate the abundance of the material, and some of the physical properties to facilitate collection. The mission also showed how much variety of material can be found within short distances, which suggests that more detailed surveys of interesting locations on Mars will be necessary to determine optimal places for human exploration and activities.

In conclusion, despites all the limitations to the fidelity of the simulation (gravity and atmospheric conditions, not-airtightness of the habitat and the space suits), the crew managed to achieve an adequate level of Mars analogy in the geologic EVAs. The landscape, the colors, the cumbersomeness of the suits, and the attention given by the crew to simulation details gave the impression of being exploring Mars and added to the challenges of the experience, producing outstanding results.


Clarke, J. (2003), The regolith geology of the MDRS study area, report.

Cooper, J. (2002), Mining Mars, CMA Management, September 2002, pp. 38-41.

Cuadros, J., and J. R. Michalski (2013), Investigation of Al-rich clays on Mars: evidence for kaolinite-smectite mixed-layer versus mixture of end-member phases, Icarus, vol. 222, pp. 296-306.

Curreri, P. A., and D. R. Criswell (1999), In situ production of solar power systems for exploration: potential for in situ rectenna production on Mars, AIP Conference proceedings, vol. 458, pp. 1623-1628.

Gundlach, B., and J. Blum (2013), A new method to determine the grain size of planetary regolith, Icarus, vol. 223, pp. 479-492.

Hargitai, E., ed. (2008), MDRS unofficial expedition guide, technical report by MDRS crews 42 and 71.

Horgan, B., J. A. Kahmann-Robinson, J. L. Bishop, and P. R. Christensen (2013), Climate change and a sequence of habitable ancient surface environments preserved in pedogenically altered sediments at Mawrth vallis, Mars, 44th Lunar and Planetary Science Conference.

Jones, E., G. Caprarelli, F. P. Mills, B. Doran, and J. Clarke (2014), An alternative approach to mapping thermophysical units from Martian termal inertia and albedo data using a combination of unsupervised classification techniques, Remote Sensing, vol. 6, pp. 5184-5237.

Muscatello, A. C., and E. Santiago-Maldonado (2012), Mars in-situ resource utilization technology evaluation, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

Presley, M. A., and P. R. Christensen (2010), Thermal conductivity measurements of particulate materials, 4. Effect of bulk density for granular particles, Journal of Geophysical Research, vol. 115 no. E07003.

Sacksteder, K. R., and G. B. Sanders (2007), In-situ resource utilization for Lunar and Mars exploration, 45th AIAA Aerospace Sciences Meeting and Exhibit.

Sanders, G. B., and M. Duke (2005), In-situ resource utilization (ISRU) capability roadmap executive summary, NASA report.

Sanders, G. B., and W. E. Larson (2015), Final review of analog field campaigns for in situ resource utilization technology and capability maturation, Advances in Space Research, vol. 55, pp. 2381-2404.

Wan, L., R. Wendner, and G. Cusatis (2015), A novel material for in situ construction on Mars: experiments and numerical simulations, Northwestern University Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) internal report.


Science Report – January 13th

The Effectiveness of Radio Direction Finding for EVA Navigation in Situations of Low Visibility

Justin Mansell

MDRS Crew 186 Journalist


Determining one’s position is a fundamental problem encountered in engineering. On Earth it is possible to use the constellation of GPS satellites to accurately pinpoint your position relative to a location where you would like to go. This capability does not currently exist on Mars, nor will it be likely to exist when humans first set foot on the planet. The difficulty of localizing an astronaut’s position relative to a location of interest is amplified in conditions of low visibility such as night or an unexpected dust storm. The resulting disorientation could greatly imperil any astronaut caught unprepared in such circumstances.

The purpose of this research was to explore how a disoriented astronaut might use radio signals to guide them to a target while on EVA. The core concept is to have the astronaut carry a radio antenna whose sensitivity is directional. Meanwhile, a navigation beacon at the target broadcasts a radio signal in all directions. If the astronaut is unable to locate their query by traditional means they can use the directional radio to determine the direction of the transmitting beacon, and therefore the direction they must walk to reach it.

Figure 1: Searching for the direction of maximum signal.

Experiment Setup

Prior to the mission I assembled a 3-element handheld Yagi antenna from schematics researched on the Internet. The particular design uses foldable elements made from steel tape measure and originated with Joe Leggio for use in amateur radio foxhunts [Leggio, 1993]. This design is lightweight and easy to stow due to the foldable elements. A coaxial cable with an SMA adapter allows the antenna to be plugged into virtually any portable ham radio.

The transmitter beacon is a commercial handheld ham radio with no special modifications. I created an audio file of a Morse signal toning the phrase, “This is the MDRS amateur navigation beacon crew 186”, and broadcast this signal from the beacon by connecting an iPod playing the audio file to the radio with an aux cable. In each test of the navigation experiment the radio beacon was located at the habitat and the Morse signal was broadcast at regular intervals by having a crewmember simply hold down the transmit button. A crewmember on EVA would then attempt to use the Yagi antenna to locate the direction of maximum signal and thereby the bearing to the habitat. The beacon was transmitted on the low power setting of the beacon radio (approximately 2.5 Watts) at a frequency of 146.565 MHz.

The Yagi antenna was used to aid EVA navigation on a total of four EVA’s, two of which were dedicated exclusively to testing its effectiveness. On the first two tests I followed a road on the outward trek and then attempted to follow the navigation signal along a straight line back to the habitat. This took me through unfamiliar terrain but did not adequately represent conditions of low visibility. On the later two tests I gave the antenna to a crewmember unfamiliar with amateur radio and covered the upper two thirds of their helmet with a cardboard visor. This restricted their vision to approximately 5 meters and prevented them from using landmarks to help them locate the habitat. Supporting members of the EVA then led the “lost astronaut” volunteer at least 2 kilometers from the habitat and monitored their safety as they attempted to return to the habitat using the radio alone.

Figure 2: Preparing the lost astronaut before EVA.


The first two tests of the navigation antenna were useful for understanding its performance. The accuracy of the antenna in locating the direction to the beacon generally improves with distance. This is because close to the beacon the signal is strong enough to saturate the receiver even along its insensitive axis. The beacon signal therefore appears to originate from all directions. At greater distances the beacon signal is weak and careful pointing of the antenna may be required to receive it at all. At a distance of 4 kilometers the accuracy of the antenna in determining the bearing to the habitat appeared to be better than 10 degrees. This was reduced to over 90 degrees when within a kilometer of the habitat and worse still when even nearer.

During the tests I found that the poor accuracy of the antenna near the transmitter could be mitigated in the following way. The antenna is least sensitive to incoming signal along a direction parallel to the receiving elements. By searching instead for the direction of minimum signal I could deduce that the beacon was located at a right angle to my current pointing direction. This provided acceptable accuracy at sub-kilometer distances.

On the tests with the cardboard visor limiting the astronaut’s vision the difficulty of navigating by natural senses alone was professed by the arcing paths participants took prior to and in between broadcasts of the navigation beacon. In fact, on the final test the mock “lost astronaut” walked a complete circle with a radius less than 100 m in between two broadcasts of the beacon. To limit the drift of the astronaut’s path it was necessary to decrease the intervals between the beacon transmissions to a nearly continuous broadcast. In both tests with the cardboard visor the astronaut was able successfully navigate to within 500 meters of the habitat despite limited knowledge of their initial position and orientation.

I also note that the surrounding terrain did not appear to have a significant detrimental affect of the performance of the antenna, but this has been difficult to quantify.

Figure 3: Scanning to find the bearing to the hab.


The navigation experiments of MDRS Crew 186 suggest that a handheld directional antenna is a simple and effective means of EVA navigation in low visibility conditions. However, the current set up has several limitations which are noted below.

The current means of searching for the direction of maximum signal provides only the direct bearing to the transmitter beacon. As was found in several of the tests, following a direct path to the beacon is not always possible due to intervening terrain. The user is then on their own to determine an appropriate detour and this may act to further their disorientation. Additional information may be required beyond that provided by a directional antenna in order to navigate successfully.

At distances close to the transmitter the technique of searching for a direction at right angles to the directions of minimum signal proved satisfactory in our experiments. However, because there are always two such directions the astronaut is at risk of following a path directly away from the beacon instead of towards it. This is possible when receiving along the sensitive axis of the antenna as well, but is less likely because the signal strength received by the back lobe of the antenna is generally much weaker compared to the front. Instead of searching for the direction of minimum signal, a better solution would be to attach an attenuator between the antenna and receiver so that the astronaut can reduce the received signal when close to the beacon.

Finally, the rapid drift of participants from their initial heading in between broadcasts of the beacon suggests that either the navigation beacon should be broadcast continuously or astronauts should have some way of preserving their orientation while walking. The later option is desirable because terrain, weather, or the need to handle equipment may temporarily prevent the signal from being received. On Earth an obvious solution is to mark the desired bearing on a compass and follow it accordingly, but this will not work on Mars due to the lack of a global magnetic field.

Figure 4: Finding the habitat using its radio beacon.


Leggios, J. (1993), Tape Measure Beam Optimized for Radio Direction Finding,


I would like to thank Geoffrey Andrews, Jennifer Pouplin, and Cesare Guariniello at Purdue University for their assistance fabricating and testing the Yagi antenna prior to the mission.

Nav Experiment 13Jan2018.docx

Science Report – January 13th

Science Report (Microbiology)


Author: Samuel Albert, Crew 186 Health & Safety Officer


-Marshall Porterfield, Ph.D., Purdue University, West Lafayette, IN, United States

-Sarah Wallace, Ph.D., NASA JSC, Houston, TX, United States

-Sarah Stahl, M.S., NASA JSC, Houston, TX, United States

As part of my role as Health & Safety Officer of MDRS Crew 186, I have been conducting research on the microbial environment in the habitat and greenhouse at MDRS. To do this, I am using the sample-to-sequence method developed by spaceflight microbiologists at NASA including Dr. Sarah Wallace and Sarah Stahl, M.S. This method uses a combination of polymerase chain reaction (PCR) and DNA sequencing technology. Specifically, I am using the miniPCR and minION devices, as were used in the Genes in Space-3 experiment on the International Space Station (ISS).

The testing at MDRS is meant to survey the microbial environment in the habitat as an analog for operational monitoring that would be necessary on a Mars base. The ability to perform real-time DNA sequencing will help diagnose infectious diseases and monitor crew health on long-duration space missions. Thus, conducting this research at MDRS increases the fidelity of simulation while collecting useful data on the microbial environment in the habitat.

Four runs were planned originally. The first run encountered errors and yielded poor results, only about 350 reads. The second run, which sampled from crops growing in the GreenHab, yielded much better results, over 600,000 reads. This run was in collaboration with the ongoing experiments by GreenHab Officer Mark Gee. The third run, which sampled from locations on the upper deck of the habitat, yielded strong results as well, about 26,000 reads. The fourth run, which sampled from the bathroom and shower area on the lower deck of the habitat, unfortunately yielded the worst results, with a paltry 34 reads. In the case of the first and fourth runs, any one of the many steps could have gone wrong to produce such a low read count, but the most likely reason is that the flow cells were damaged at some point. The fourth flow cell had over 1000 active pores when a quality control test was performed early in the mission, but less than 600 active pores immediately prior to sequencing.

Following the mission, all results will be analyzed to assess which microbes were found in the various sampling locations. Return samples are also being sent to the Dr. Wallace at Wyle Laboratories at NASA JSC for post-mission sequencing, which will help validate results for runs 2 and 3 and help provide results for runs 1 and 4. These results will be compared with data from similar studies on the ISS (i.e. Genes In Space-3) as well as with data from other analog stations.

Samuel Albert, Crew 186 Health & Safety Officer